首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pol III, a subassembly of Escherichia coli DNA polymerase III holoenzyme lacking only the auxiliary beta subunit, was purified to homogeneity by an improved procedure. This assembly consists of nine different polypeptides, likely in a 1:1 stoichiometry: a catalytic core (pol III) of alpha (132 kDa), epsilon (27 kDa), and theta (10 kDa), and six auxiliary subunits: tau (71 kDa), gamma (52 kDa), delta (35 kDa), delta' (33 kDa), chi (15 kDa), and psi (12 kDa). The assembly behaves on gel filtration as a particle of about 800 kDa, indicating a content of two each of the subunits. A new procedure for purifying the core yielded a novel dimeric form which may provide the foundation for the dimeric nature of the more complex pol III and holoenzyme forms. Pol III readily dissociates into several subassemblies including pol III', likely a dimeric core with two tau subunits. The holoenzyme, purified by a similar procedure with ATP and Mg2+ present throughout, retained the beta subunit (37 kDa) as well as all the subunits present in pol III; the mass of the holoenzyme was estimated to be 900 kDa. The isolated initiation complex of holoenzyme with a primed template DNA and the elongation complex (formed in the presence of three deoxynucleoside triphosphates) had the same composition and stoichiometry as observed for pol III with two beta dimers in addition. An initiation complex assembled from a mixture of monomeric pol III core, gamma 2 delta delta' chi psi complex (gamma complex), beta, and tau retained the core, one beta dimer, and two tau subunits but was deficient in the gamma complex. When tau was omitted from the assembly mixture, the initiation complex contained one or two gamma complexes instead of the tau subunit. Based on these data, pol III holoenzyme is judged to be an asymmetric dimeric particle with twin pol III core active sites and two different sets of auxiliary units designed to achieve essentially concurrent replication of both leading and lagging strand templates.  相似文献   

2.
A mutant form of yeast RNA polymerase II that lacks the fourth and seventh largest subunits, referred to as pol II delta 4/7, crystallized on positively charged lipid layers. Both single-layered (two-dimensional) crystals and several multi-layered crystal forms were obtained. The two-dimensional crystals, preserved in negative stain, diffracted strongly to about 1/20 A-1 and more weakly to 1/13 A-1 resolution. A projection map computed from averaged Fourier transforms revealed four pol II delta 4/7 complexes per unit cell and further revealed a cleft on the surface of the complex similar to that previously observed in the structure of Escherichia coli RNA polymerase. One of the multi-layered crystal forms, preserved in negative stain, diffracted strongly beyond 1/15 A-1 resolution. Coherent diffraction from the multi-layered crystal is indicative of protein-protein interactions between layers and ordering in the third dimension.  相似文献   

3.
DNA polymerase III holoenzyme (holenzyme) has an ATPase activity elicited only by a primed DNA template. Reaction of preformed ATP.holoenzyme complex with a primed template results in hydrolysis of the ATP bound to the holoenzyme, release of ADP and Pi, and formation of an initiation complex between holoenzyme and the primed template. Approximately two ATP molecules are hydrolyzed for each initiation complex formed, a value in keeping with the number bound in the ATP.holoenzyme complex. The possibility that the latter and the initiation complex contain two holoenzyme molecules is supported by the presence of two beta monomers in the initiation complex. Holoenzyme action in the absence of ATP resembles that of pol III (the holoenzyme core) or DNA polymerase III (holoenzyme lacking the beta subunit), with or without ATP, in sensitivity to salt and in processivity of elongation. The initiation complex formed by ATP-activated holoenzyme resists a level of KCl (150 mM) that completely inhibits nonactivated holoenzyme and the incomplete forms of the holoenzyme, and displays a processivity at least 20 times greater. Upon completing replication of available template, holoenzyme can dissociate and form an initiation complex with another primed template, provided ATP is available to reactivate the holoenzyme. By inference, no essential subunits are lost in the cycle of initiation, elongation and dissociation.  相似文献   

4.
5.
Processive DNA synthesis, a property of DNA polymerase III holoenzyme of Escherichia coli, was not achieved by combining the pol III core (alpha, epsilon, and theta subunits) and the beta and gamma subunits. An activity that restored processivity to these subunits was found in crude extracts and was overproduced 4-fold in cells with plasmids amplifying the tau and gamma subunits. Purified to homogeneity, the activity, assayed by reconstitution of processivity, was represented by five polypeptides which were copurified. Judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, these correspond to the known subunits gamma (52 kDa) and delta (35 kDa) and to three new polypeptides: delta' (33 kDa), chi (15 kDa), and psi (12 kDa). The five polypeptides form a tight complex with a native molecular weight of about 200 kDa and a subunit stoichiometry of two gamma subunits to one each of the others. Processive DNA synthesis, now achieved with only three components (pol III core, beta, and the auxiliary complex), provides the opportunity to assess the functions of each and the contribution that the remaining auxiliary tau subunit makes to reconstitute a holoenzyme.  相似文献   

6.
7.
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.  相似文献   

8.
9.
10.
11.
The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RFC, and Escherichia coli single strand DNA-binding protein (SSB) and required the presence of ATP. "Passive" self-loading of PCNA onto DNA takes place in the absence of RFC, in an ATP-independent reaction, which was strongly inhibited by SSB. The nucleotide substitution error rate for pol delta holoenzyme (HE) (pol delta + PCNA + RFC) was 4.6 x 10(-4) for T.G mispairs, 5.3 x 10(-5) for G.G mispairs, and 4.5 x 10(-6) for A.G mispairs. The T.G misincorporation frequency for pol delta without the accessory proteins was unchanged. The fidelity of pol delta HE was between 1 and 2 orders of magnitude lower than that measured for the E. coli pol III HE at the same template position. This relatively low fidelity was caused by inefficient proofreading by the S. pombe polymerase-associated proofreading exonuclease. The S. pombe 3'-exonuclease activity was also extremely inefficient in excising primer-3'-terminal mismatches in the absence of dNTP substrates and in hydrolyzing single-stranded DNA. A comparison of pol delta HE with E. coli pol IIIalpha HE (lacking the proofreading exonuclease subunit) showed that both holoenzymes exhibit similar error rates for each mispair.  相似文献   

12.
13.
Using a screen to identify human genes that promote pseudohyphal conversion in Saccharomyces cerevisiae, we obtained a cDNA encoding hsRPB7, a human homologue of the seventh largest subunit of yeast RNA polymerase II (RPB7). Overexpression of yeast RPB7 in a comparable strain background caused more pronounced cell elongation than overexpression of hsRPB7. hsRPB7 sequence and function are strongly conserved with its yeast counterpart because its expression can rescue deletion of the essential RPB7 gene at moderate temperatures. Further, immuno-precipitation of RNA polymerase II from yeast cells containing hsRPB7 revealed that the hsRPB7 assembles the complete set of 11 other yeast subunits. However, at temperature extremes and during maintenance at stationary phase, hsRPB7-containing yeast cells lose viability rapidly, stress-sensitive phenotypes reminiscent of those associated with deletion of the RPB4 subunit with which RPB7 normally complexes. Two-hybrid analysis revealed that although hsRPB7 and RPB4 interact, the association is of lower affinity than the RPB4-RPB7 interaction, providing a probable mechanism for the failure of hsRPB7 to fully function in yeast cells at high and low temperatures. Finally, surprisingly, hsRPB7 RNA in human cells is expressed in a tissue-specific pattern that differs from that of the RNA polymerase II largest subunit, implying a potential regulatory role for hsRPB7. Taken together, these results suggest that some RPB7 functions may be analogous to those possessed by the stress-specific prokaryotic sigma factor rpoS.  相似文献   

14.
We report here our initial success in using fluorescence energy transfer to map the position of the subunits of the DNA polymerase III holoenzyme within initiation complexes formed on primed DNA. Using primers containing a fluorescent derivative 3 nucleotides from the 3'-terminus and acceptors of fluorescence energy transfer located on Cys333 of the beta subunit, a donor-acceptor distance of 65 A was measured. Coupling this distance with other information enabled us to propose a model for the positioning of beta within initiation complexes. Examination of the fluorescence properties of a labeled primer with the unlabeled beta subunit and other assemblies of DNA polymerase III holoenzyme subunits allowed us to distinguish all of the known intermediates of the holoenzyme-catalyzed reaction. Specific fluorescence changes could be assigned for primer annealing, Escherichia coli single-stranded DNA-binding protein binding, 3'----5' exonucleolytic hydrolysis of the primer, DNA polymerase III* binding, initiation complex formation upon the addition of beta in the presence of ATP, and DNA elongation. These fluorescence changes are sufficiently large to support future detailed kinetic studies. Particularly interesting was the difference in fluorescence changes accompanying initiation complex formation as compared to binding of DNA polymerase III holoenzyme subunit assemblies. Initiation complex formation resulted in a strong fluorescence enhancement. Binding of DNA polymerase III* led to a fluorescence quenching, and transfer of beta to primed DNA by the gamma delta complex did not change the fluorescence. This demonstrates a rearrangement of subunits accompanying initiation complex formation. Monitoring fluorescence changes with labeled beta, we have determined that beta binds with a stoichiometry of one monomer/primer terminus.  相似文献   

15.
16.
The spatial distribution of four subunits specifically associated to the yeast DNA-dependent RNA polymerase I (RNA pol I) was studied by electron microscopy. A structural model of the native enzyme was determined by cryo-electron microscopy from isolated molecules and was compared with the atomic structure of RNA pol II Delta 4/7, which lacks the specific polypeptides. The two models were aligned and a difference map revealed four additional protein densities present in RNA pol I, which were characterized by immunolabelling. A protruding protein density named stalk was found to contain the RNA pol I-specific subunits A43 and A14. The docking with the atomic structure showed that the stalk protruded from the structure at the same site as the C-terminal domain (CTD) of the largest subunit of RNA pol II. Subunit A49 was placed on top of the clamp whereas subunit A34.5 bound at the entrance of the DNA binding cleft, where it could contact the downstream DNA. The location of the RNA pol I-specific subunits is correlated with their biological activity.  相似文献   

17.
CF II, a factor required for cleavage of the 3' ends of mRNA precursor in Saccharomyces cerevisiae, has been shown to contain four polypeptides. The three largest subunits, Cft1/Yhh1, Cft2/Ydh1, and Brr5/Ysh1, are homologs of the three largest subunits of mammalian cleavage-polyadenylation specificity factor (CPSF), an activity needed for both cleavage and poly(A) addition. In this report, we show by protein sequencing and immunoreactivity that the fourth subunit of CF II is Pta1, an essential 90-kDa protein originally implicated in tRNA splicing. Yth1, the yeast homolog of the CPSF 30-kDa subunit, is not detected in this complex. Extracts prepared from pta1 mutant strains are impaired in the cleavage and the poly(A) addition of both GAL7 and CYC1 substrates and exhibit little processing activity even after prolonged incubation. However, activity is efficiently rescued by the addition of purified CF II to the defective extracts. Extract from a strain with a mutation in the CF IA subunit Rna14 also restored processing, but extract from a brr5-1 strain did not. The amounts of Pta1 and other CF II subunits are reduced in pta1 strains, suggesting that levels of the subunits may be coordinately regulated. Coimmunoprecipitation experiments indicate that the CF II in extract can be found in a stable complex containing Pap1, CF II, and the Fip1 and Yth1 subunits of polyadenylation factor I. While purified CF II does not appear to retain the association with these other factors, this larger complex may be the form recruited onto pre-mRNA in vivo. The involvement of Pta1 in both steps of mRNA 3'-end formation supports the conclusion that CF II is the functional homolog of CPSF.  相似文献   

18.
19.
Hashimoto K  Shimizu K  Nakashima N  Sugino A 《Biochemistry》2003,42(48):14207-14213
DNA polymerases delta and epsilon (pol delta and epsilon) are the two major replicative polymerases in the budding yeast Saccharomyces cerevisiae. The fidelity of pol delta is influenced by its 3'-5' proofreading exonuclease activity, which corrects misinsertion errors, and by enzyme cofactors. PCNA is a pol delta cofactor, called the sliding clamp, which increases the processivity of pol delta holoenzyme. This study measures the fidelity of 3'-5' exonuclease-proficient and -deficient pol delta holoenzyme using a synthetic 30mer primer/100mer template in the presence and absence of PCNA. Although PCNA increases pol delta processivity, the presence of PCNA decreased pol delta fidelity 2-7-fold. In particular, wild-type pol delta demonstrated the following nucleotide substitution efficiencies for mismatches in the absence of PCNA: G.G, 0.728 x 10(-4); T.G, 1.82 x 10(-4); A.G, <0.01 x 10(-4). In the presence of PCNA these values increased as follows: G.G, 1.30 x 10(-4); T.G, 2.62 x 10(-4); A.G, 0.074 x 10(-4). A similar but smaller effect was observed for exonuclease-deficient pol delta (i.e., 2-4-fold increase in nucleotide substitution efficiencies in the presence of PCNA). Thus, the fidelity of wild-type pol delta in the presence of PCNA is more than 2 orders of magnitude lower than the fidelity of wild-type pol epsilon holoenzyme and is comparable to the fidelity of exonuclease-deficient pol epsilon holoenzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号