首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
土壤宏基因组学技术及其应用   总被引:17,自引:0,他引:17  
传统的基于培养的研究方法只能反映土壤中少数(0.1%~10 %)微生物的信息,而大部分微生物目前还不能培养,因而这部分微生物资源尚难以被有效地开发利用.宏基因组学是分子生物学技术应用于环境微生物生态学研究而形成的一个新概念,主要技术包括土壤DNA的提取、文库的构建和目标基因克隆的筛选.它可为揭示微生物生态功能及其分子基础提供更全面的遗传信息,并已在微生物新功能基因筛选、活性物质开发和微生物多样性研究等方面取得了显著成果.本文对土壤宏基因组学技术的方法和应用作了详细介绍.  相似文献   

2.
Extremophiles as a source for novel enzymes   总被引:14,自引:0,他引:14  
Microbial life does not seem to be limited to specific environments. During the past few decades it has become clear that microbial communities can be found in the most diverse conditions, including extremes of temperature, pressure, salinity and pH. These microorganisms, called extremophiles, produce biocatalysts that are functional under extreme conditions. Consequently, the unique properties of these biocatalysts have resulted in several novel applications of enzymes in industrial processes. At present, only a minor fraction of the microorganisms on Earth have been exploited. Novel developments in the cultivation and production of extremophiles, but also developments related to the cloning and expression of their genes in heterologous hosts, will increase the number of enzyme-driven transformations in chemical, food, pharmaceutical and other industrial applications.  相似文献   

3.
采用传统分离培养筛选微生物新活性物质的方法受到很大制约,自然界99%以上的微生物不能培养,其资源开发受到很大限制。环境微生物宏基因组技术应用避开了微生物分离纯培养问题,极大拓展了微生物资源的利用空间,增加获得新活性物质的机会和途径。本文着重介绍宏基因组的概念、研究策略包括DNA提取、文库构建与筛选等及在微生物活性物质筛选中的应用,并对宏基因组研究中存在的问题进行探讨。  相似文献   

4.
微生物蕴藏着大量具有工业应用潜力的生物催化剂。然而,传统培养方法只能从环境中获得不到1%的微生物。宏基因组学是通过提取某一特定环境中的所有微生物基因组DNA、构建基因组文库并对文库进行筛选,寻找和发现新的功能基因的一种方法。它绕过了微生物分离培养过程,成为研究环境样品中不可培养微生物的有力手段。因此,从宏基因组中挖掘新型生物催化剂一直倍受生物学家的关注。以下主要对宏基因组文库的样品来源、DNA提取方法、文库的构建和筛选策略的选择这4个方面的研究状况进行了综述,列举了近年来利用宏基因组技术所获得的新型生物催化剂,并对其今后的研究方向提出了展望。  相似文献   

5.
Cytochrome P450 enzymes (P450s) are able to regioselectively and stereoselectively introduce oxygen into organic compounds under mild reaction conditions. These monooxygenases in particular easily catalyze the insertion of oxygen into less reactive carbon–hydrogen bonds. Hence, P450s are of considerable interest as oxidation biocatalysts. To date, although several P450s have been discovered through screening of microorganisms and have been further genetically engineered, the substrate range of these biocatalysts is still limited to fulfill the requirements for a large number of oxidation processes. On the other hand, the recent rapid expansion in the number of reported microbial genome sequences has revealed the presence of an unexpectedly vast number of P450 genes. This large pool of naturally evolved P450s has attracted much attention as a resource for new oxidation biocatalysts. In this review, we focus on aspects of the genome mining approach that are relevant for the discovery of novel P450 biocatalysts. This approach opens up possibilities for exploitation of the catalytic potential of P450s for the preparation of a large choice of oxidation biocatalysts with a variety of substrate specificities.  相似文献   

6.
Metagenomic analyses: past and future trends   总被引:2,自引:0,他引:2  
  相似文献   

7.
This review attempts to demonstrate the importance of goal-orientated screening for new biocatalysts. Examples of enzymes and microorganisms that have been developed and that have acquired commercial applications are described so as to illustrate the technological potential of biocatalysts. A survey of screening techniques and recently reported examples of screening from food, chemical, pharmaceutical and waste disposal applications etc. are also presented to demonstrate the feasibility of this approach for generating new biocatalysts. An appreciation of some of the difficulties involved, the achievements of Japanese researchers and some examples of the cornucopia of largely unrecognized and potentially valuable microbial activities are also given. An increased effort in screening would have the following benefits: an increased range of biocatalysts with different enzyme activities would be available and more biocatalysts with improved characteristics, suitable for use under industrial conditions, such as resistance to elevated temperatures, extremes of pH and organic solvents would be discovered. Secondly the manpower and other resources required to carry out screening programmes would be reduced, for instance by developing automated techniques. Thirdly, screening procedures would be made much more accessible to non-specialists. Fourthly, improved efforts and expertise in screening would supplement other emerging techniques such as protein engineering. The development of selective, non-random, goal-orientated screening techniques, methods of evaluating biocatalyst performance under operational conditions, and an approach that is more orientated towards commercially desirable goals are essential if these objectives are to be achieved. Screening of naturally occurring microorganisms still appears to be the best way to obtain new strains and/or enzymes for commercial applications. However, two major problems appear to exist. Firstly in identifying applications that are technically feasible and that have sufficient commercial potential to justify the research and development required to generate a new commercially viable biocatalyst and secondly the relatively small number of scientists outside Japan with skill and experience in screening for biocatalysts.  相似文献   

8.
There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.  相似文献   

9.
The increasing demand for novel biocatalysts stimulates exploration of resources from soil. Metagenomics, a culture independent approach, represent a sheer unlimited resource for discovery of novel biocatalysts from uncultured microorganisms. In this study, a soil-derived metagenomic library containing 90,700 recombinants was constructed and screened for lipase, cellulase, protease and amylase activity. A gene (pAMY) of 909 bp encoding for amylase was found after the screening of 35,000 Escherichia coli clones. Amino acid sequence comparison and phylogenetic analysis indicated that pAMY was closely related to uncultured bacteria. The molecular mass of pAMY was estimated about 38 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Amylase activity was determined using soluble starch, amylose, glycogen and maltose as substrates. The maximal activity (2.46 U/mg) was observed at 40 °C under nearly neutral pH conditions with amylose; whereas it retains 90% of its activity at low temperature with all the substrates used in this study. The ability of pAMY to work at low temperature is unique for amylases reported so far from microbes of cultured and uncultured division.  相似文献   

10.
White Biotechnology uses microorganisms and enzymes to manufacture a large variety of chemical products. Therefore, the demand for new and useful biocatalysts is steadily and rapidly increasing. We have developed methods for the isolation of new enzyme genes, constructed novel expression systems, and optimized existing enzymes for biotechnological applications by methods of directed evolution. Furthermore, we have isolated and characterized biocatalysts relevant for the preparation of enantiopure compounds.  相似文献   

11.
Extremozyme     
Extremozymes for biotechnological applications Industrial biotechnology is a fast growing and proliferating field of research. Biocatalysis gradually replaces chemical processes and is widely used in textile or food industry or in the sustainable production of fine chemicals. Although currently most of the enzymes in industry are of mesophilic origin, the focus is changing towards more robust biocatalysts from extremophilic organisms. Research on extremophiles will progressively supply novel extremozymes for biotechnological applications. In particular (hyper‐)thermophiles, acidophiles or salt‐tolerant microorganisms are a rich source of industrial applicable and robust extremozymes with optimal activity under harsh conditions.  相似文献   

12.
Metagenomics has accelerated the process of discovery of novel biocatalysts by enabling scientists to tap directly into the entire diversity of enzymes held within natural microbial populations. Their characterization has revealed a great deal of valuable information about enzymatic activity in terms of factors which influence their stability and activity under a wide range of conditions. Many of the biocatalysts have particular properties making them suitable for biotechnological applications. A diverse array of strategies has been developed to optimize each step of the process of generating and screening metagenomic libraries for novel biocatalysts. This review covers the diversity of metagenome-derived enzymes characterized to date, and the strategies currently being developed to optimize discovery of novel metagenomic biocatalysts.  相似文献   

13.
Among the wide variety of amylolytic enzymes synthesized by microorganisms, α-amylases are the most widely used biocatalysts in starch saccharification, baking industries and textile desizing. These enzymes randomly cleave the α-1,4-glycosidic linkages in starch, generating maltose and malto-oligosaccharides. The commercially available α-amylases have certain limitations, such as limited activity at low pH and Ca2+-dependence, and therefore, the search for novel acid-stable and thermostable amylases from extremophilic microorganisms and the engineering of the already available enzymes have been the major areas of research in this field over the years. Several attempts have been made to find suitable microbial sources of acid-stable and thermostable α-amylases. Acid-stable α-amylases have been reported in fungi, bacteria and archaea. α-Amylases that are active at elevated temperatures have been reported in bacteria as well as in archaea. α-Amylases that possess both characteristics, to the extent required for their various applications are very scarce. The developments that have been made in molecular biology, directed evolution and structural conformation studies of α-amylases for improving their properties to suit various industrial applications are discussed in this review.  相似文献   

14.
Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (< or =C5) and showed mesophilic properties. In vitro, EstDL136 catalyzed the deacetylation of 1- and 3- acetyl and 1,3-diacetyl derivates; in contrast, EstDL26 was not capable of the deacetylation at C1, indicating a potential regioselectivity. EstDL26 and EstDL136 were similar to microbial hormone-sensitive lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria.  相似文献   

15.
Fungal biocatalysts in the biofiltration of VOC-polluted air   总被引:3,自引:0,他引:3  
Gas-phase biofilters used for the treatment of waste gases were originally packed with compost or other natural filter beds containing indigenous microorganisms. Over the past decade much effort has been made to develop new carrier materials, more performant biocatalysts and new types of bioreactors. Elimination capacities reached nowadays are 5 to 10 times higher than those originally reported with conventional compost biofilters. With the recently developed inert filter beds, inoculation is a prerequisite for successful start-up and operation. Either non-defined mixed cultures or pure bacterial cultures have originally been used. The search for efficient fungal biocatalysts started only a few years ago, mainly for the biofiltration of waste gases containing hydrophobic compounds, such as styrene, alpha-pinene, benzene, or alkylbenzenes. In this review, recently isolated new fungal strains able to degrade alkylbenzenes and other related volatile organic pollutants are described, as well as their major characteristics and their use as biocatalysts in gas-phase biofilters for air pollution control. In biofiltration, the most extensively studied organism belongs to the genus Exophiala, although strains of Scedosporium, Paecilomyces, Cladosporium, Cladophialophora, and white-rot fungi are all potential candidates for use in biofilters. Encouraging results were obtained in most of the cases in which some of those organisms were present in gas-phase biofilters. They allow reaching high elimination capacities and are resistant to low pH values and to reduce moisture content.  相似文献   

16.
Protein evolution by molecular breeding.   总被引:5,自引:0,他引:5  
Natural evolution has guided the development of 'molecular breeding' processes used in the laboratory for the rapid modification of subgenomic sequences including single genes. The most significant recent development has been the in vitro permutation of natural diversity. Homologous recombination of multiple related sequences produced high-quality libraries of chimeric sequences encoding proteins with functions that differ dramatically from any of the parents. Increasingly powerful screening methods are also being developed, allowing these libraries to be screened for novel biocatalysts.  相似文献   

17.
The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification.  相似文献   

18.
A total of 969 microbial strains were isolated from soil samples and tested to determine their lipolytic activity by employing screening techniques on solid and in liquid media. Ten lipase-producing microorganisms were selected and their taxonomic identification was carried out. From these strains Achremonium murorum, Monascus mucoroides, Arthroderma ciferri, Fusarium poae, Ovadendron sulphureo-ochraceum and Rhodotorula araucariae are described as lipase-producers for the first time. Hydrolysis activity of the crude lipases against both tributyrin and olive oil was measured. Heptyl oleate synthesis was carried out to test the activity of the selected lipases as biocatalysts in organic medium. All the selected lipases were tested as biocatalysts in several organic reactions using unnatural substrates. Lipases from the fungi Fusarium. oxysporum and O. sulphureo-ochraceum gave the best yields and enantioselectivities in the esterification of carboxylic acids. F. oxysporum and Penicillium chrysogenum lipases were the most active ones for the acylation of alcohols without steric hindrance. A. murorum lipase is very useful for the esterification of menthol. F. oxysporum and Fusarium. solani lipases were very stereoselective in the synthesis of carbamates.  相似文献   

19.
Fermentations with new recombinant organisms.   总被引:7,自引:0,他引:7  
United States fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharoymces cerevisiae and Zymomonas mobilis for pentose utilization. We have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21-34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different "industrially hardened" strains may find separate applications in the fermentation of specific feedstocks.  相似文献   

20.
Microorganisms constitute two third of the Earth's biological diversity. As many as 99% of the microorganisms present in certain environments cannot be cultured by standard techniques. Culture-independent methods are required to understand the genetic diversity, population structure and ecological roles of the majority of organisms. Metagenomics is the genomic analysis of microorganisms by direct extraction and cloning of DNA from their natural environment. Protocols have been developed to capture unexplored microbial diversity to overcome the existing barriers in estimation of diversity. New screening methods have been designed to select specific functional genes within metagenomic libraries to detect novel biocatalysts as well as bioactive molecules applicable to mankind. To study the complete gene or operon clusters, various vectors including cosmid, fosmid or bacterial artificial chromosomes are being developed. Bioinformatics tools and databases have added much to the study of microbial diversity. This review describes the various methodologies and tools developed to understand the biology of uncultured microbes including bacteria, archaea and viruses through metagenomic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号