首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Anatomical investigations of the muscular layer of the cardia in corpses of adults (30-70 years of age) have shown the presence in the cardia of a 25-35 mm long sphincter disposed at an angle to the horizontal plane. Its formation proceeds with the participation of both the esophageal musculature (circular layer) and gastric musculature (gastro-esophageal fibers of the oblique muscular layer). As a whole, myo-architectonics of the cardia is dependent on the character of interrelation of the muscular layers of the esophagus and stomach which is responsible for the opening and closure of the gastro-esophageal junction.  相似文献   

2.
The aim of this study was to combine the anatomy and physiology of the human gastroesophageal junction (the junction between the esophagus and the stomach) into a unified computer model. A three-dimensional (3D) computer model of the gastroesophageal junction was created using cross-sectional images from a human cadaver. The governing equations of finite deformation elasticity were incorporated into the 3D model. The model was used to predict the intraluminal pressure values (pressure inside the junction) due to the muscle contraction of the gastroesophageal junction and the effects of the surrounding structures. The intraluminal pressure results obtained from the 3D model were consistent with experimental values available in the literature. The model was also used to examine the independent roles of each muscle layer (circular and longitudinal) of the gastroesophageal junction by contracting them separately. Results showed that the intraluminal pressure values predicted by the model were primarily due to the contraction of the circular muscle layer. If the circular muscle layer was quiescent, the contraction of the longitudinal muscle layer resulted in an expansion of the junction.In conclusion, the model provided reliable predictions of the intraluminal pressure values during the contraction of a normal gastroesophageal junction. The model also provided a framework to examine the role of each muscle layer during the contraction of the gastroesophageal junction.  相似文献   

3.
At the gastroesophageal junction, most vertebrates possess a functional lower esophageal sphincter (LES) which may serve to regulate the passage of liquids and food into the stomach and prevent the reflux of gastric contents into the esophagus. Snakes seemingly lack an LES and consume meals large enough to extend anteriorly from the stomach into the esophagus thereby providing the opportunity for the reflux of gastric juices. To explore whether snakes experience or can prevent gastric reflux, we examined post-feeding changes of luminal pH of the distal esophagus and stomach, the fine scale luminal pH profile at the gastroesophageal junction, and the morphology of the gastroesophageal junction for the Burmese python (Python molurus), the African brown house snake (Lamprophis fuliginosus), and the diamondback water snake (Nerodia rhombifer). For each species fasted, there was no distension of the gastroesophageal junction and only modest changes in luminal pH from the distal esophagus into the stomach. Feeding resulted in marked distension and changes in tissue morphology of the gastroesophageal junction. Simultaneously, there was a significant decrease in luminal pH of the distal esophagus for pythons and house snakes, and for all three species a steep gradient in luminal pH decreasing across a 3-cm span from the distal edge of the esophagus into the proximal edge of the stomach. The moderate acidification of the distalmost portion of the esophagus for pythons and house snakes suggests that there is some anterior movement of gastric juices across the gastroesophageal junction. Given that this modest reflux of gastric fluid is localized to the most distal region of the esophagus, snakes are apparently able to prevent and protect against acid reflux in the absence of a functional LES.  相似文献   

4.
The cardiac region (pars cardiaca) of the cat's stomach was examined with light and scanning electron microscopy. The glands are simple, coiled tubular, and contain mucus-secreting cells. Their surfaces are covered with microvilli which are concentrated on the boundaries of the mucus-secreting cells. A few cells interposed between the glandular cells are probably G cells. They are identified by apical projections of long microvilli into the lumen of the gland. The surface epithelial cells lining the cardiac region are covered by minute microvilli. The muscularis mucosae is not distinctly divided into two layers. However, a group of smooth muscle cells which are directed in a circular manner around the gastroesophageal junction is considered to be the distal esophageal sphincter.  相似文献   

5.
Anatomo-topographic studies of the esophagogastric junction in humans   总被引:1,自引:0,他引:1  
By means of histo-topographical sections 80 preparations of the distal end of the esophagus and the cardia of the stomach have been studied. The blocks have been cut in the frontal and horizontal planes. Certain variability in thickness of the circular layer of the EGP muscle membrane has been revealed. Presence of the EGP sphincter has been proved morphologically. The maximal thickness of the EGP sphincter is observed in stomachs of the greatest dimensions and vice versa, the minimal one--in stomachs of the least dimensions. The maximal manifestation of the sphincter has been described in the preparations of the stomachs which have the form of a stocking, and the minimal--the form of a horn. The maximal manifestation of the EGP sphincter is demonstrated at 26 up to 60 years of age. The most often occurring places of the EGP sphincter localization have been determined: they are in the region of the esophageal foramen of the diaphragm and the abdominal part of the esophagus.  相似文献   

6.
The distribution and morphology of nitroxidergic elements in the esophagus, stomach, and intestine of the shishamo smelt Hypomesus japonicus (Teleostei: Salmoniformes) were studied. Nitroxidergic cells and fibers were found in all examined parts of the digestive tract, occurring most frequently in the stomach and rectal portion of the intestine. The spatial density of the nerve cells and fibers was maximum in the myenteric plexus and circular muscle layer and decreased in the longitudinal muscle layer and in the submucous plexus.  相似文献   

7.
A body wall musculature comprising an outer layer of circularfibers and an inner layer of longitudinal fibers is generallyseen as the basic plan in Annelida. Additional muscles may bepresent such as oblique, parapodial, chaetal, and dorsoventralmuscles. The longitudinal muscle fibers do not form a continuouslayer but are arranged in distinct bands in polychaetes. Mostlythere are four to six bands, usually including prominent ventraland dorsal bands. However, other patterns of muscle band arrangementalso exist. The ventral nerve cord lies between the two ventralbands in certain polychaetes, and is covered by an additionallongitudinal muscle band of comparatively small size. In manypolychaetes with reduced parapodia and in Clitellata a moreor less continuous layer of longitudinal fibers is formed. Clitellatais the only group with a complete layer of longitudinal musculature.Circular fibers are usually less developed than the longitudinalmuscles. However, recent investigations employing phalloidinstaining in combination with confocal laser scanning microscopyrevealed that absence of circular muscles is much more widelydistributed within the polychaetes than was previously known.This necessitates thorough reinvestigations of polychaete musclesystems, and this feature has to be taken into account in furtherdiscussions of the phylogeny and evolution of Annelida.  相似文献   

8.
In an attempt to identify the distribution and structure of vagal fibers and terminals in the gastroduodenal junction, vagal efferents were labeled in vivo by multiple injections of the fluorescent carbocyanine dye DiA into the dorsal motor nucleus (dmnX), and vagal afferents were anterogradely labeled by injections of DiI into the nodose ganglia of the same or separate rats. Thick frontal cryostat sections were analysed either with conventional or laser scanning confocal microscopy, using appropriate filter combinations and/or different wavelength laser excitation to distinguish the fluorescent tracers. Vagal efferent terminal-like structures were present in small ganglia within the circular sphincter muscle, which, in the absence of a well-developed, true myenteric plexus at this level, represent the myenteric ganglia. Furthermore, vagal efferent terminals were also present in submucosal ganglia, but were absent from mucosa, Brunner's glands and circular muscle fibers. Vagal afferent fibers and terminal-like structures were more abundant than efferents. The most prominent afferent terminals were profusely branching, large net-like aggregates of varicose fibers running within the connective tissue matrix predominantly parallel to the circular sphincter muscle bundles. Profusely arborizing, highly varicose endings were also present in large myenteric ganglia of the antrum and duodenum, in the modified intramuscular ganglia, and in submucosal ganglia. Additionally, afferent fibers and terminals were present throughout the mucosal lining of the gastroduodenal junction. The branching patterns of some vagal afferents suggested that individual axons produced multiple collaterals in different compartments. NADPH-diaphorase positive, possibly nitroxergic neurons were present in myenteric ganglia of the immediately adjacent antrum and duodenum, and fine varicose fibers entered the sphincter muscle from both sides, delineating the potential vagal inhibitory postganglionic innervation. These morphological results support the view of a rich and differentiated extrinsic neural control of this important gut region as suggested by functional studies.  相似文献   

9.
Summary Histological and ultrastructural observations of the digestive tract of eight-armed plutei of Dendraster excentricus are reported. The esophagus is divided into two regions. The uppermost is a narrow tube comprised of ciliated cells that assist in transporting food to the more bulbous lower esophagus where food particles are formed into a bolus prior to entering the stomach. The esophagus is surrounded by a network of smooth muscle fibers that are predominantly oriented circumferentially in the upper esophagus, and longitudinally in the lower esophagus. The musculature of the upper esophagus produces peristaltic contractions, whereas contractions of the muscle of the lower esophagus open the cardiac sphincter and force food from the lower esophagus into the stomach. Axons are associated with the ciliated cells and the muscles of the upper esophagus. The cardiac sphincter consists of a ring of myoepithelium, with cross-striated myofibrils oriented around the bases of the cells. The gastric epithelium is comprised of two cell types. Type I cells, which predominate, absorb and store nutrients, and may be the source of secreted digestive enzymes. Type II cells apparently phagocytize and intracellularly digest whole algal cells. The intestine is comprised of relatively unspecialized cells and probably functions primarily as a conductive tube for the elimination of undigested materials.  相似文献   

10.
本文报道了爪鲵消化系统的形态学和组织学结构特点。爪鲵口腔底部具有肌肉质的舌,食管很短,胃是呈纺锤形的长囊,胃壁较厚,粘膜厚,胃腺发达。消化管肌层皆为平滑肌,环肌明显多于纵肌。肝脏较大,分左、中、右三叶;有胆囊;胰腺长带状,胰管与胆管汇合后与小肠最前部的十二指肠相连。  相似文献   

11.
The esophagus of the eucrustaceans is known as a short tube that connects the mouth with the stomach but has generally received little attention by the carcinologists, especially during the larval stages. By this reason, the present study is focused on the morphology and ultrastructure of the esophagus in the brachyuran Maja brachydactyla during the larval development and adult stage. The esophagus shows internally four longitudinal folds. The simple columnar epithelium is covered by a thick cuticle. The epithelial cells of the adults are intensively interdigitated and show abundant apical mitochondria and bundles of filamentous structures. The cuticle surface has microspines and mutually exclusive pores. Three muscle layers surrounded by the connective tissue are reported: circular muscles forming a broad continuous band, longitudinal muscle bundles adjacent to the circular muscles, and dilator muscles crossing the connective tissue vertically toward the epithelium. The connective tissue has rosette glands. The esophagus of the larvae have epithelial cells with big vesicles but poorly developed interdigitations and filamentous structures, the cuticle is formed by a procuticle without differentiated exocuticle and endocuticle, the connective layer is thin and the rosette glands are absent. The observed features can be explained by his role in the swallowing of the food.  相似文献   

12.
Enkephalins are involved in neural control of digestive functions such as motility, secretion, and absorption. To better understand their role in pigs, we analyzed the qualitative and quantitative distribution of enkephalin immunoreactivity (ENK-IR) in components of the intestinal wall from the esophagus to the anal sphincter. Immunohistochemical labelings were analyzed using conventional fluorescence and confocal microscopy. ENK-IR was compared with the synaptophysin immunoreactivity (SYN-IR). The results show that maximal ENK-IR levels in the entire digestive tract are reached in the myenteric plexuses and, to a lesser extent, in the external submucous plexus and the circular muscle layer. In the longitudinal muscle layer, ENK-IR was present in the esophagus, stomach, rectum, and anal sphincter, whereas it was absent from the duodenum to the distal colon. In the ENK-IR plexuses and muscle layers, more than 60% of the nerve fibers identified by SYN-IR expressed ENK-IR. No ENK-IR was observed in the internal submucous plexus and the mucosa; the latter was found to contain ENK-IR endocrine cells. These results strongly suggest that, in pigs, enkephalins play a major role in the regulatory mechanisms that underlie the neural control of digestive motility.  相似文献   

13.
In an attempt to identify the distribution and structure of vagal fibers and terminals in the gastroduodenal junction, vagal efferents were labeled in vivo by multiple injections of the fluorescent carbocyanine dye DiA into the dorsal motor nucleus (dmnX), and vagal afferents were anterogradely labeled by injections of DiI into the nodose ganglia of the same or separate rats. Thick frontal cryostat sections were analysed either with conventional or laser scanning confocal microscopy, using appropriate filter combinations and/or different wavelength laser excitation to distinguish the fluorescent tracers. Vagal efferent terminal-like structures were present in small ganglia within the circular sphincter muscle, which, in the absence of a well-developed, true myenteric plexus at this level, represent the myenteric ganglia. Furthermore, vagal efferent terminals were also present in submucosal ganglia, but were absent from mucosa, Brunner's glands and circular muscle fibers. Vagal afferent fibers and terminal-like structures were more abundant than efferents. The most prominent afferent terminals were profusely branching, large net-like aggregates of varicose fibers running within the connective tissue matrix predominantly parallel to the circular sphincter muscle bundles. Profusely arborizing, highly varicose endings were also present in large myenteric ganglia of the antrum and duodenum, in the modified intramuscular ganglia, and in submucosal ganglia. Additionally, afferent fibers and terminals were present throughout the mucosal lining of the gastroduodenal junction. The branching patterns of some vagal afferents suggested that individual axons produced multiple collaterals in different compartments. NADPH-diaphorase positive, possibly nitroxergic neurons were present in myenteric ganglia of the immediately adjacent antrum and duodenum, and fine varicose fibers entered the sphincter muscle from both sides, delineating the potential vagal inhibitory postganglionic innervation. These morphological results support the view of a rich and differentiated extrinsic neural control of this important gut region as suggested by functional studies.Abbreviations BSA Bovine serum albumin - CGRP calcitonin generelated peptide - DiA carbocyanine dye A - DiI carbocyanine dye I - dmnX dorsal motor nucleus of vagus - DMSO dimethylsulfoxide - ENK enkephalin - FITC fluorescin isothiocyanate - NADPH diaphorase nicotinamide adenine diphosphate - NPY neuropeptide Y - NTS nucleus tractus solitarii - PBS phosphate-buffered saline - VIP vasoactive intestinal peptide - WGA-HRP wheat-germ agglutinine-horseradish peroxidase  相似文献   

14.
PACAP, a VIP-like peptide, in neurons of the esophagus.   总被引:1,自引:0,他引:1  
The lower esophagus of guinea-pig, cat, sheep and man was analyzed for pituitary adenylate cyclase activating peptide (PACAP), a novel vasoactive intestinal peptide (VIP)-like peptide, using immunocytochemistry and radioimmunoassay. PACAP-immunoreactive nerve fibers were numerous in the longitudinal and circular muscle layers of sheep and man, moderate in numbers in cat, while being few in the esophagus of guinea-pig. A few PACAP-immunoreactive nerve cell bodies and numerous nerve fibers were seen in the myenteric ganglia of the esophagus of cat, sheep and man. In the lower esophagus of cat, sheep and man all PACAP-containing nerve cell bodies and nerve fibers stored VIP. The results of radioimmunoassay of PACAP in extracts of specimens from man were in good agreement with the immunocytochemical findings. High performance liquid chromatography revealed one major peak of PACAP-like immunoreactivity in extracts of human esophagus. We suggest that neuronal PACAP may serve to modulate motor activity and secretion in the lower esophageal sphincter region.  相似文献   

15.
In order to determine the three-dimensional (3D) resolved muscular anatomy of the mammalian esophagus, we have examined its myoarchitecture with diffusion spectrum magnetic resonance imaging (DSI) and tractography. DSI measures diffusion displacement as a function of magnetic gradients of varied direction and intensity and displays the displacement profile as a 3D contour per voxel. In tractography, the orientation vectors of maximum diffusion/voxel are identified, and intervoxel associations are constructed by a streamline algorithm based on angular similarity in order to generate mesoscale myofiber tracts. We demonstrate that the proximal body of the esophagus consists of helically aligned crossing fiber populations that overlap between layers in the form of a “zipper” region along the length of the tissue. With increasingly distal position along the length of the tissue, helix angle and skeletal muscle prevalence are reduced such that fibers align themselves in the most distal location into distinct inner circular and outer longitudinal smooth muscle layers. We conclude that esophageal myoanatomy consists of crossing myofibers exhibiting a decreasing degree of helicity as a function of axial position and propose that this unique geometric construct provides a mechanism to resist distension and promote aboral flow. This work was supported by the National Institutes of Health (grants RO1-DC05604 to Richard J. Gilbert and RO1- MH64044 to Van J. Wedeen.  相似文献   

16.
The effect of calcitonin gene-related peptide (CGRP) on the feline lower esophageal sphincter (LES) was determined and correlated with its anatomic distribution as determined by immunohistochemistry. Intraluminal pressures of the esophagus and LES were recorded in anesthetized cats. In separate cats, gastroesophageal junctions were removed after locating the LES manometrically and stained for CGRP-like immunoreactivity (LI) and substance P-LI (SP-LI) by indirect immunohistochemistry. CGRP-LI in the LES was most prominent in large nerve fascicles between the circular and longitudinal muscle layers and only rarely seen in nerve fibers within the circular muscle. The myenteric plexus contained numerous CGRP-LI nerve fibers but cell bodies were not seen. Many CGRP-LI nerve fibers in the myenteric plexus and occasional varicose nerves in the circular muscle demonstrated colocalization with SP-LI. Colocalization of CGRP-LI with SP-LI was also seen in the perivascular nerves of the submucosal and intramural blood vessels and in varicose fibers in the lamina propria of the gastric fundic mucosa. In the esophagus, CGRP-LI nerves extended through the muscularis mucosa and penetrated the squamous epithelium to the lumen. CGRP, given intra-arterially caused a dose-dependent fall in basal LES pressure, with a threshold dose of 10(-8) g/kg (2.63 pmol/kg). At the maximal effective dose, 5 x 10(-6) g/kg (1.31 x 10(3) pmol/kg), CGRP produced 61.0 +/- 6.0% decrease in basal LES pressure. At this dose, mean systemic blood pressure fell by 40.9 +/- 7.8%. The LES relaxation induced by a submaximal dose of CGRP (10(-6) g/kg, 262.7 pmol/kg), 50.3 +/- 3.2% relaxation was partially inhibited by tetrodotoxin (26.9 +/- 10.8% relaxation, P less than 0.025). The inhibitory effect of CGRP was not affected by cervical vagotomy, hexamethonium, atropine, propranolol, or naloxone. The LES contractile response to the D90 of SP (5 x 10(-8) g/kg, 37.1 pmol/kg) was not altered by CGRP 10(-8) or 10(-6) g/kg and the CGRP relaxation effect was not altered by the threshold dose of substance P (5 X 10(-9) g/kg, 3.71 pmol/kg). CONCLUSIONS: (1) CGRP-LI is present at the feline LES and is primarily seen in large nerve fascicles which pass from the intermuscular plane and through the circular muscle layer to the submucosa and in mucosal nerves. (2) CGRP colocalizes with SP-LI in some varicose nerve fibers of the circular muscle of the esophagus, LES and fundus, in perivascular nerves of the submucosal and intramucosal blood vessels, and in nerves of the lamina propria of the gastric fundus. (3) The luminal penetration of CGRP-LI nerves in the squamous mucosa of the esophagus suggests a sensory func  相似文献   

17.
The mechanical force relationships that distinguish normal from chronic reflux at sphincter opening are poorly understood and difficult to measure in vivo. Our aim was to apply physics-based computer simulations to determine mechanical pathogenesis of gastroesophageal reflux. A mathematical model of the gastroesophageal segment (GES) was developed, incorporating the primary anatomical and physiomechanical elements that drive GES opening and reflux. In vivo data were used to quantify muscle stiffness, sphincter tone, and gastric pressure. The liquid lining the mucosa was modeled as an "effective liquid film" between the mucosa and a manometric catheter. Newton's second law was solved mathematically, and the space-time details of opening and reflux were predicted for systematic variations in gastric pressure increase, film thickness, muscle stiffness, and tone. "Reflux" was defined as "2 ml of refluxate entering the esophagus within 1 s." GES opening and reflux were different events. Both were sensitive to changes in gastric pressure and sphincter tone. Reflux initiation was extremely sensitive to the liquid film thickness; the protective function of the sphincter was destroyed with only 0.4 mm of liquid in the GES. Compliance had no effect on reflux initiation, but affected reflux volume. The presence of abnormal levels of liquid within the collapsed GES can greatly increase the probability for reflux, suggesting a mechanical mechanism that may differentiate normal reflux from gastroesophageal reflux disease. Compliance does not affect the probability for reflux, but affects reflux volume once it occurs. Opening without reflux suggests the existence of "gastroesophageal pooling" in the distal esophagus, with clinical implications.  相似文献   

18.
金丝猴食管和胃连接部的组织学研究   总被引:1,自引:0,他引:1  
本文研究了金丝猴食管和胃连接处的组织结构。金丝猴的食管粘膜为典型的复民鳞状上皮,食管末端含有粘膜腺,粘膜表面有轻微的角质化。管壁外纵肌层有少量的横纹肌。与胃粘膜的连接均位于胃的贲门部以内,两种上皮的连接是突然的,不存在过渡。 贲门腺为少量的分枝管状腺,短而直,由粘膜细胞构成,对PAS染色呈阳性反应。  相似文献   

19.
The muscle layer of the canine gallbladder wall and cystic duct was found to be a three-dimensional meshwork of smooth muscle bundles which appear loosely and irregularly arranged on the mucosal aspect and consolidate to form a homogeneous plate-like layer on the serosal aspect. The muscle bundles are tightly woven around interspersed pockets of loose connective tissue in the gallbladder wall and gradually become loosely arranged with more prominent amounts of intervening connective tissue in the cystic duct. The muscle layer is thickest in the gallbladder wall and becomes progressively thinner out into the cystic duct. No anatomic sphincter was observed. Ultrastructural organization revealed individual muscle fibers to be of irregular profile, often branching, widely spaced with intervening collagen fibers, and having few cell-to-cell contacts.  相似文献   

20.
The histology and ultrastructure of the body wall in Phoronopsis harmeriwere studied using light microscopy and TEM. The ectoderm epithelium of tentacles, anterior body region, and ampulla consists of monociliary cells. Gram-negative bacteria were found between microvilli, in the protocuticle of the anterior region, and in the ampulla. The epithelium of the posterior body region lacks both monociliary cells and bacteria. The bundles of nerve fibers run between the layer of epithelial cells and basal membrane. The musculature of the body wall comprises circular and longitudinal muscles. The circular muscle fibers are applied to the basal membrane and constitute a solid layer extending almost throughout the length of the body. This pattern is broken in the posterior body region, where there is no solid layer of circular musculature, and the latter is arranged in isolated muscle bands. In the ampullar (terminal) body region, the inversion of circular and longitudinal muscle layers takes place, so that the latter appears to be pressed against the basal membrane. The apical surfaces of longitudinal muscle cells bear cytoplasmic processes; some of the cells have a flagellum. The basal portion of the longitudinal muscle cells forms a cytoplasmic process containing bundles of tonofilaments. The processes of all cells making up the muscle bands are interwoven and anchored to the basal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号