共查询到20条相似文献,搜索用时 0 毫秒
1.
Naomi Sakashita Motohiro Takeya Takeshi Kishida Thomas M. Stackhouse Berton Zbar Kiyoshi Takahashi 《The Histochemical journal》1999,31(2):133-144
To examine the localization of von Hippel–Lindau (VHL) protein in human tissues, we produced four novel monoclonal antibodies against human VHL protein. Western blot analysis revealed that two of these antibodies recognized the epitope in amino acid sequence 60–89 of the VHL protein and the others recognized sequences 54–60 and 189–213. In a wild-type VHL gene-transfected cell line, immunocytochemistry and immunoelectron microscopy demonstrated the intracytoplasmic localization of VHL protein, particularly in mitotic cells. In normal human tissues, VHL protein was detected immunohistochemically in epithelial cells covering the body surface and the alimentary, respiratory, and genitourinary tracts; in secretory epithelial cells of exocrine and endocrine organs; in parenchymal cells of visceral organs; in cardiomyocytes; in neurons in nervous tissue; in lymphocytes in lymphoid tissue; and in macrophages. In pathological specimens, VHL protein was expressed in VHL-related tumor, as well as in endothelial cells, fibroblasts, and pericytes, all of which are involved in active angiogenesis. These findings suggest that these monoclonal antibodies can be useful for various immunological assays and that the VHL protein plays fundamental roles in physiological and pathological situations, especially in neovascularization. 相似文献
2.
We recently reported a reciprocal relationship between tumor necrosis factor alpha (TNFα) and insulin-like receptor growth factor binding protein 3 (IGFBP-3) in whole retina of normal and IGFBP-3 knockout mice. A similar relationship was also observed in cultured retinal endothelial cells (REC). We found that TNFα significantly reduced IGFBP-3 levels and vice-versa, IGFBP-3 can lower TNFα and TNFα receptor expression. Since IGFBP-3 is protective to the diabetic retina and TNFα is causative in the development of diabetic retinopathy, we wanted to better understand the cellular mechanisms by which TNFα can reduce IGFBP-3 levels. For these studies, primary human retinal endothelial cells (REC) were used since these cells undergo TNFα-mediated apoptosis under conditions of high glucose conditions and contribute to diabetic retinopathy. We first cultured REC in normal or high glucose, treated with exogenous TNFα, then measured changes in potential signaling pathways, with a focus on P38 mitogen-activated protein kinase alpha (P38α) and casein kinase 2 (CK2) as these pathways have been linked to both TNFα and IGFBP-3. We found that TNFα significantly increased phosphorylation of P38α and CK2. Furthermore, specific inhibitors of P38α or CK2 blocked TNFα inhibition of IGFBP-3 expression, demonstrating that TNFα reduces IGFBP-3 through activation of P38α and CK2. Since TNFα and IGFBP-3 are key mediators of retinal damage and protection respectively in diabetic retinopathy, increased understanding of the relationship between these two proteins will offer new therapeutic options for treatment. 相似文献
3.
Shee-Chan Lin Wei-Yu Chen Kai-Yuan Lin Sheng-Hsuan Chen Chun-Chao Chang Sey-En Lin Chia-Lang Fang 《PloS one》2013,8(2)
Objectives
This study investigated the PKCα protein expression in gastric carcinoma, and correlated it with clinicopathological parameters. The prognostic significance of PKCα protein expression in gastric carcinoma was analyzed.Methods
Quantitative real-time PCR test was applied to compare the PKCα mRNA expression in tumorous and nontumorous tissues of gastric carcinoma in ten randomly selected cases. Then PKCα protein expression was evaluated in 215 cases of gastric carcinoma using immunohistochemical method. The immunoreactivity was scored semiquantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely PKCα overexpression group with score 2 or 3, and non-overexpression group with score 0 or 1. The PKCα protein expression was correlated with clinicopathological parameters. Survival analysis was performed to determine the prognostic significance of PKCα protein expression in patients with gastric carcinoma.Results
PKCα mRNA expression was upregulated in all ten cases of gastric carcinoma via quantitative real-time PCR test. In immunohistochemical study, eighty-eight out of 215 cases (41%) of gastric carcinoma revealed PKCα protein overexpression, which was statistically correlated with age (P = 0.0073), histologic type (P<0.0001), tumor differentiation (P = 0.0110), depth of invasion (P = 0.0003), angiolymphatic invasion (P = 0.0373), pathologic stage (P = 0.0047), and distant metastasis (P = 0.0048). We found no significant difference in overall and disease free survival rates between PKCα overexpression and non-overexpression groups (P = 0.0680 and 0.0587). However, PKCα protein overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 0.632, P = 0.0415).Conclusions
PKCα protein is upregulated in gastric carcinoma. PKCα protein expression is statistically correlated with age, histologic type, tumor differentiation, depth of invasion, angiolymphatic invasion, pathologic stage, and distant metastasis. The PKCα protein overexpression in patients with gastric carcinoma is a significant independent prognostic factor in multivariate Cox regression analysis. 相似文献4.
Katariina Nurmi Juhani Virkanen Kristiina Rajam?ki Katri Niemi Petri T. Kovanen Kari K. Eklund 《PloS one》2013,8(11)
Objective
In the pathogenesis of coronary atherosclerosis, local macrophage-driven inflammation and secretion of proinflammatory cytokines, interleukin-1β (IL-1β) in particular, are recognized as key factors. Moderate alcohol consumption is associated with a reduced risk of coronary artery disease mortality. Here we examined in cultured human macrophages whether ethanol modulates the intracellular processes involved in the secretion of IL-1β.Results
Ethanol decreased dose-dependently the production of mature IL-1β induced by activators of the NLRP3 inflammasome, i.e. ATP, cholesterol crystals, serum amyloid A and nigericin. Ethanol had no significant effect on the expression of NLRP3 or IL1B mRNA in LPS-primed macrophages. Moreover, secretion of IL-1β was decreased in parallel with reduction of caspase-1 activation, demonstrating that ethanol inhibits inflammasome activation instead of synthesis of pro-IL-1β. Acetaldehyde, a highly reactive metabolite of ethanol, had no effect on the ATP-induced IL-1β secretion. Ethanol also attenuated the secretion of IL-1β triggered by synthetic double-stranded DNA, an activator of the AIM2 inflammasome. Ethanol conferred the inhibitory functions by attenuating the disruption of lysosomal integrity and ensuing leakage of the lysosomal protease cathepsin B and by reducing oligomerization of ASC.Conclusion
Ethanol-induced inhibition of the NLRP3 inflammasome activation in macrophages may represent a biological pathway underlying the protective effect of moderate alcohol consumption on coronary heart disease. 相似文献5.
《Molecular cell biology research communications》2001,4(2):106-110
Protein kinase C is a family of serine/threonine protein kinases involved in many cellular responses, including cell survival and apoptosis. We have recently found that specific inhibition of the PKCα isoform by nucleic acid enzymes induced apoptosis in sensitive cells. Here we show that in PKCα DNA enzyme-treated glioma cells the activation of MAP kinases ERK1/2 is inhibited, whereas their total level was not significantly affected by the treatment. Similar results were obtained when the overall activity of the PKC was inhibited by calphostin, a specific inhibitor for PKC. These results would indicate that the ERK1/2 signaling pathway plays an important role in glioma cell survival and that the PKCα isoform is the main modulator of this pathway. Furthermore, we show that the ERK1/2 signaling pathway is required for the constitutive expression of the basic fibroblast growth factor, a potent mitogen for glioma cell growth. 相似文献
6.
Matsumoto S Murozono M Nagaoka D Matsuoka S Takeda A Narita H Watanabe S Isshiki A Watanabe Y 《Neurochemical research》2008,33(11):2302-2309
Volatile anesthetics isoflurane possibly improves the ischemic brain injury. However, its molecular actions are still unclear.
In ischemia, protein kinase C (PKC)γ and calcium/calmodulin dependent protein kinase II (CaMKII)-α are persistently translocated
from cytosol to cell membranes, and diminish these translocation suggested to be neuroprotective. We thus tested a hypothesis
that isoflurane inhibits PKCγ and CaMKII-α translocation after ischemic brain insults. C57Bl/6J male mice were made to inhale
1 or 2 MAC isoflurane, after which 3 or 5 min cerebral ischemia was induced by decapitation. The sampled cerebrum cortex was
then homogenized and centrifuged into crude synaptosomal fractions (P2), cytosolic fractions (S3), and particulate fractions
(P3). CaMKII-α and PKCγ levels of these fractions were analyzed by immunoblotting. PKCγ and CaMKII-α are translocated to synaptic
membrane from cytosol by cerebral ischemia, although isoflurane significantly inhibited such translocation. These results
may explain in part the cellular and molecular mechanisms of neuroprotective effects of isoflurane. 相似文献
7.
8.
9.
Roland Scholz Marianne Suter Th��odore Weimann C��cile Polge Petr V. Konarev Ramon F. Thali Roland D. Tuerk Benoit Viollet Theo Wallimann Uwe Schlattner Dietbert Neumann 《The Journal of biological chemistry》2009,284(40):27425-27437
AMP-activated protein kinase (AMPK) is a heterotrimeric complex playing a crucial role in maintaining cellular energy homeostasis. Recently, homodimerization of mammalian AMPK and yeast ortholog SNF1 was shown by us and others. In SNF1, it involved specific hydrophobic residues in the kinase domain αG-helix. Mutation of the corresponding AMPK α-subunit residues (Val-219 and Phe-223) to glutamate reduced the tendency of the kinase to form higher order homo-oligomers, as was determined by the following three independent techniques in vitro: (i) small angle x-ray scattering, (ii) surface plasmon resonance spectroscopy, and (iii) two-dimensional blue native/SDS-PAGE. Recombinant protein as well as AMPK in cell lysates of primary cells revealed distinct complexes of various sizes. In particular, the assembly of very high molecular mass complexes was dependent on both the αG-helix-mediated hydrophobic interactions and kinase activation. In vitro and when overexpressed in double knock-out (α1−/−, α2−/−) mouse embryonic fibroblast cells, activation of mutant AMPK was impaired, indicating a critical role of the αG-helix residues for AMPK activation via its upstream kinases. Also inactivation by protein phosphatase 2Cα was affected in mutant AMPK. Importantly, activation of mutant AMPK by LKB1 was restored by exchanging the corresponding and conserved hydrophobic αG-helix residues of LKB1 (Ile-260 and Phe-264) to positively charged amino acids. These mutations functionally rescued LKB1-dependent activation of mutant AMPK in vitro and in cell culture. Our data suggest a physiological role for the hydrophobic αG-helix residues in homo-oligomerization of heterotrimers and cellular interactions, in particular with upstream kinases, indicating an additional level of AMPK regulation.The maintenance of energy homeostasis is a basic requirement of all living organisms. The AMP-activated protein kinase (AMPK)2 is crucially involved in this essential process by playing a central role in sensing and regulating energy metabolism on the cellular and whole body level (1–6). AMPK is also participating in several signaling pathways associated with cancer and metabolic diseases, like type 2 diabetes mellitus, obesity, and other metabolic disorders (7–9).Mammalian AMPK belongs to a highly conserved family of serine/threonine protein kinases with homologs found in all eukaryotic organisms examined (1, 3, 10). Its heterotrimeric structure includes a catalytic α-subunit and regulatory β- and γ-subunits. These subunits exist in different isoforms (α1, α2, β1, β2, γ1, γ2, and γ3) and splice variants (for γ2 and γ3) and can thus assemble to a broad variety of heterotrimeric isoform combinations. The α- and β-subunits possess multiple autophosphorylation sites, which have been implicated in regulation of subcellular localization and kinase activation (11–15). The most critical step of AMPK activation, however, is phosphorylation of Thr-172 within the activation segment of the α-subunit kinase domain. At least two AMPK upstream kinases (AMPKKs) have been identified so far, namely the tumor suppressor kinase LKB1 in complex with MO25 and STRAD (16) and Ca2+/calmodulin-dependent protein kinase kinase-2 (CamKK2) (17). Furthermore, the transforming growth factor-β-activated kinase 1 was also shown to activate AMPK using a variety of in vitro approaches (18), but the physiological relevance of these findings remains unclear. Besides direct phosphorylation of Thr-172, AMPK activity is stimulated by the allosteric activator AMP, which can bind to two Bateman domains formed by two pairs of CBS domains within the γ-subunit (19–22). Hereby bound AMP not only allosterically stimulates AMPK but also protects Thr-172 from dephosphorylation by protein phosphatase 2Cα (PP2Cα) and thus hinders inactivation of the kinase (19, 22, 23). Consequently, on the cellular level, AMPK is activated upon metabolic stress increasing the AMP/ATP ratio. Furthermore, AMPK activation can also be induced by several chemical compounds, like nucleoside 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (24) and the anti-diabetic drug Metformin (25–28). In addition, the small molecule compound A-769662 was recently developed as a direct allosteric activator of AMPK (29, 30).Previous work in our groups proposed a model of AMPK regulation by AMP, which incorporates the major functional features and the latest structural information (31). The latter mainly included truncated core complexes of AMPK from different species (32–35). Further valuable structural information is provided by the x-ray structures of the isolated catalytic domains, in particular of the human AMPK α2-subunit (Protein Data Bank code 2H6D) and its yeast ortholog SNF1 (36, 37). The kinase domain of SNF1 is capable of forming homodimers in the protein crystal, as well as in vitro in solution, in a unique way, which has not been observed previously in any other kinase (36). The dimer interface is predominantly formed by hydrophobic interactions of the loop-αG region, also known as subdomain X situated on the large kinase lobe (36, 38, 39), and it mainly involves Ile-257 and Phe-261. Because the T-loop activation segment was buried within the dimer interface, it was suggested that the dimeric state of the SNF1 catalytic domain represents the inactive form of the kinase. Intriguingly, it was shown in our groups by small angle x-ray scattering that AMPK self-organizes in a concentration-dependent manner to form homo-oligomers in solution (31). However, the interface responsible for oligomerization of the AMPK heterotrimer has remained elusive.Here we further investigate the distinct oligomeric states of the AMPK heterotrimer and suggest a possible regulatory function for this process. Most importantly, we provide conclusive evidence for participation of αG-helix residues in the recognition of AMPK by its upstream kinases LKB1 and CamKK2. 相似文献
10.
Kazuyuki Kitatani Masayuki Wada David Perry Toshinori Usui Ying Sun Lina M. Obeid Nobuo Yaegashi Gregory A. Grabowski Yusuf A. Hannun 《PloS one》2015,10(8)
Gaucher’s disease is caused by defects in acid β-glucosidase 1 (GBA1) and has been also proposed as an inflammatory disease. GBA1 cleaves glucosylceramide to form ceramide, an established bioactive lipid, and defects in GBA1 lead to aberrant accumulation in glucosylceramide and insufficient formation of ceramide. We investigated if the pro-inflammatory kinase p38 is activated in Gaucher’s disease, since ceramide has been proposed to suppress p38 activation. Three Gaucher’s disease mouse models were employed, and p38 was found to be activated in lung and liver tissues of all Gaucher’s disease mice. Most interestingly, neuronopathic Gaucher’s disease type mice, but not non-neuronopathic ones, displayed significant activation of p38 and up-regulation of p38-inducible proinflammatory cytokines in brain tissues. In addition, all type of Gaucher’s disease mice also showed increases in serum IL-6. As cellular signalling is believed to represent an in vivo inflammatory phenotype in Gaucher’s disease, activation of p38 and possibly its-associated formation of proinflammatory cytokines were assessed in fibroblasts established from neuronopathic Gaucher’s disease mice. In mouse Gaucher’s disease cells, p38 activation and IL-6 formation by TNF-α treatment were enhanced as compared to those of wild type. Furthermore, human fibroblasts from Gaucher’s disease patients also displayed increases in p38 activation and IL-6 formation as comparison to healthy counterpart. These results raise the potential that proinflammatory responses such as p38 activation and IL-6 formation are augmented in Gaucher’s disease. 相似文献
11.
12.
Huaiping Zhu Cate M. Moriasi Miao Zhang Yu Zhao Ming-Hui Zou 《The Journal of biological chemistry》2013,288(23):16495-16505
Two splice variants of LKB1 exist: LKB1 long form (LKB1L) and LKB1 short form (LKB1S). In a previous study, we demonstrated that phosphorylation of Ser-428/431 (in LKB1L) by protein kinase Cζ (PKCζ) was essential for LKB1-mediated activation of AMP-activated protein kinase (AMPK) in response to oxidants or metformin. Paradoxically, LKB1S also activates AMPK although it lacks Ser-428/431. Thus, we hypothesized that LKB1S contained additional phosphorylation sites important in AMPK activation. Truncation analysis and site-directed mutagenesis were used to identify putative PKCζ phosphorylation sites in LKB1S. Substitution of Ser-399 to alanine did not alter the activity of LKB1S, but abolished peroxynitrite- and metformin-induced activation of AMPK. Furthermore, the phosphomimetic mutation (S399D) increased the phosphorylation of AMPK and its downstream target phospho-acetyl-coenzyme A carboxylase (ACC). PKCζ-dependent phosphorylation of Ser-399 triggered nucleocytoplasmic translocation of LKB1S in response to metformin or peroxynitrite treatment. This effect was ablated by pharmacological and genetic inhibition of PKCζ, by inhibition of CRM1 activity and by substituting Ser-399 with alanine (S399A). Overexpression of PKCζ up-regulated metformin-mediated phosphorylation of both AMPK (Thr-172) and ACC (Ser-79), but the effect was ablated in the S399A mutant. We conclude that, similar to Ser-428/431 (in LKB1L), Ser-399 (in LKB1S) is a PKCζ-dependent phosphorylation site essential for nucleocytoplasmic export of LKB1S and consequent AMPK activation. 相似文献
13.
Seisuke Okazawa Yukihiro Furusawa Ayako Kariya Mariame Ali Hassan Mie Arai Ryuji Hayashi Yoshiaki Tabuchi Takashi Kondo Kazuyuki Tobe 《PloS one》2013,8(3)
The inhibition of DNA damage response pathway seems to be an attractive strategy for cancer therapy. It was previously reported that in rodent cells exposed to heat stress, cell growth was promoted by the activity of DNA-dependent protein kinase (DNA-PK), an enzyme involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair. The absence of a functioning DNA-PK was associated with down regulation of heat shock protein 70 (HSP70). The objective of this study is thus to investigate the role of DNA-PK inhibition in heat-induced apoptosis in human cell lines. The inhibitors of phosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) at Ser2056, such as NU7026 and NU7441, were utilized. Furthermore, knock down of DNA-PKcs was carried out using small interfering RNA (siDNA-PKcs). For heat exposure, cells were placed in water bath at 44°C for 60 min. Apoptosis was evaluated after 24 h incubation flow cytometrically. Proteins were extracted after 24 h and analyzed for HSP70 and HSP40 expression by Western blotting. Total RNA was extracted 6 h after treatment and analyzed using a GeneChip® microarray system to identify and select the up-regulated genes (≥1.5 fold). The results showed an enhancement in heat-induced apoptosis in absence of functioning DNA-PKcs. Interestingly, the expression levels of HSP70 and HSP40 were elevated in the absence of DNA-PKcs under heat stress. The results of genetic network analysis showed that HSPs and JUN genes were up-regulated independently of DNA-PKcs in exposed parent and knock out cells. In the presence of functioning DNA-PKcs, there was an observed up-regulation of anti-apoptotic genes, such as NR1D1, whereas in the absence of DNA-PKcs the pro-apoptotic genes, such as EGR2, were preferentially up-regulated. From these findings, we concluded that in human cells, the inactivation of DNA-PKcs can promote heat-induced apoptosis independently of heat-shock proteins. 相似文献
14.
Yamini S. Bynagari Bela Nagy Jr. Florin Tuluc Kamala Bhavaraju Soochong Kim K. Vinod Vijayan Satya P. Kunapuli 《The Journal of biological chemistry》2009,284(20):13413-13421
The novel class of protein kinase C (nPKC) isoform η is expressed in
platelets, but not much is known about its activation and function. In this
study, we investigated the mechanism of activation and functional implications
of nPKCη using pharmacological and gene knock-out approaches. nPKCη
was phosphorylated (at Thr-512) in a time- and concentration-dependent manner
by 2MeSADP. Pretreatment of platelets with MRS-2179, a P2Y1
receptor antagonist, or YM-254890, a Gq blocker, abolished
2MeSADP-induced phosphorylation of nPKCη. Similarly, ADP failed to
activate nPKCη in platelets isolated from P2Y1 and
Gq knock-out mice. However, pretreatment of platelets with
P2Y12 receptor antagonist, AR-C69331MX did not interfere with
ADP-induced nPKCη phosphorylation. In addition, when platelets were
activated with 2MeSADP under stirring conditions, although nPKCη was
phosphorylated within 30 s by ADP receptors, it was also dephosphorylated by
activated integrin αIIbβ3 mediated outside-in
signaling. Moreover, in the presence of SC-57101, a
αIIbβ3 receptor antagonist, nPKCη
dephosphorylation was inhibited. Furthermore, in murine platelets lacking
PP1cγ, a catalytic subunit of serine/threonine phosphatase,
αIIbβ3 failed to dephosphorylate nPKCη.
Thus, we conclude that ADP activates nPKCη via P2Y1 receptor
and is subsequently dephosphorylated by PP1γ phosphatase activated by
αIIbβ3 integrin. In addition, pretreatment of
platelets with η-RACK antagonistic peptides, a specific inhibitor of
nPKCη, inhibited ADP-induced thromboxane generation. However, these
peptides had no affect on ADP-induced aggregation when thromboxane generation
was blocked. In summary, nPKCη positively regulates agonist-induced
thromboxane generation with no effects on platelet aggregation.Platelets are the key cellular components in maintaining hemostasis
(1). Vascular injury exposes
subendothelial collagen that activates platelets to change shape, secrete
contents of granules, generate thromboxane, and finally aggregate via
activated αIIbβ3 integrin, to prevent further
bleeding (2,
3). ADP is a physiological
agonist of platelets secreted from dense granules and is involved in feedback
activation of platelets and hemostatic plug stabilization
(4). It activates two distinct
G-protein-coupled receptors (GPCRs) on platelets, P2Y1 and
P2Y12, which couple to Gq and Gi,
respectively
(5–8).
Gq activates phospholipase Cβ (PLCβ), which leads to
diacyl glycerol (DAG)2
generation and calcium mobilization
(9,
10). On the other hand,
Gi is involved in inhibition of cAMP levels and PI 3-kinase
activation (4,
6). Synergistic activation of
Gq and Gi proteins leads to the activation of the
fibrinogen receptor integrin αIIbβ3.
Fibrinogen bound to activated integrin αIIbβ3
further initiates feed back signaling (outside-in signaling) in platelets that
contributes to the formation of a stable platelet plug
(11).Protein kinase Cs (PKCs) are serine/threonine kinases known to regulate
various platelet functional responses such as dense granule secretion and
integrin αIIbβ3 activation
(12,
13). Based on their structure
and cofactor requirements, PKCs are divided in to three classes: classical
(cofactors: DAG, Ca2+), novel (cofactors: DAG) and atypical
(cofactors: PIP3) PKC isoforms
(14). All the members of the
novel class of PKC isoforms (nPKC), viz. nPKC isoforms δ, θ,
η, and ε, are expressed in platelets
(15), and they require DAG for
activation. Among all the nPKCs, PKCδ
(15,
16) and PKCθ
(17–19)
are fairly studied in platelets. Whereas nPKCδ is reported to regulate
protease-activated receptor (PAR)-mediated dense granule secretion
(15,
20), nPKCθ is activated
by outside-in signaling and contributes to platelet spreading on fibrinogen
(18). On the other hand, the
mechanism of activation and functional role of nPKCη is not addressed as
yet.PKCs are cytoplasmic enzymes. The enzyme activity of PKCs is modulated via
three mechanisms (14,
21): 1) cofactor binding: upon
cell stimulus, cytoplasmic PKCs mobilize to membrane, bind cofactors such as
DAG, Ca2+, or PIP3, release autoinhibition, and attain an active
conformation exposing catalytic domain of the enzyme. 2) phosphorylations:
3-phosphoinositide-dependent kinase 1 (PDK1) on the membrane phosphorylates
conserved threonine residues on activation loop of catalytic domain; this is
followed by autophosphorylations of serine/threonine residues on turn motif
and hydrophobic region. These series of phosphorylations maintain an active
conformation of the enzyme. 3) RACK binding: PKCs in active conformation bind
receptors for activated C kinases (RACKs) and are lead to various subcellular
locations to access the substrates
(22,
23). Although various leading
laboratories have elucidated the activation of PKCs, the mechanism of
down-regulation of PKCs is not completely understood.The premise of dynamic cell signaling, which involves protein
phosphorylations by kinases and dephosphorylations by phosphatases has gained
immense attention over recent years. PP1, PP2A, PP2B, PHLPP are a few of the
serine/threonine phosphatases reported to date. Among them PP1 and PP2
phosphatases are known to regulate various platelet functional responses
(24,
25). Furthermore, PP1c, is the
catalytic unit of PP1 known to constitutively associate with
αIIb and is activated upon integrin engagement with
fibrinogen and subsequent outside-in signaling
(26). Among various PP1
isoforms, recently PP1γ is shown to positively regulate platelet
functional responses (27).
Thus, in this study we investigated if the above-mentioned phosphatases are
involved in down-regulation of nPKCη. Furthermore, reports from other cell
systems suggest that nPKCη regulates ERK/JNK pathways
(28). In platelets ERK is
known to regulate agonist induced thromboxane generation
(29,
30). Thus, we also
investigated if nPKCη regulates ERK phosphorylation and thereby
agonist-induced platelet functional responses.In this study, we evaluated the activation of nPKCη downstream of ADP
receptors and its inactivation by an integrin-associated phosphatase
PP1γ. We also studied if nPKCη regulates functional responses in
platelets and found that this isoform regulates ADP-induced thromboxane
generation, but not fibrinogen receptor activation in platelets. 相似文献
15.
Sora Kim Sun-O Ka Youngyi Lee Byung-Hyun Park Xiang Fei Jae-Kyung Jung Seung-Yong Seo Eun Ju Bae 《PloS one》2015,10(2)
Preventing pathologic tissue inflammation is key to treating obesity-induced insulin resistance and type 2 diabetes. Previously, we synthesized a series of methylhonokiol analogs and reported that compounds with a carbamate structure had inhibitory function against cyclooxygenase-2 in a cell-free enzyme assay. However, whether these compounds could inhibit the expression of inflammatory genes in macrophages has not been investigated. Here, we found that a new 4-O-methylhonokiol analog, 3′,5-diallyl-4′-methoxy-[1,1′-biphenyl]-2-yl morpholine-4-carboxylate (GS12021) inhibited LPS- or TNFα-stimulated inflammation in macrophages and adipocytes, respectively. LPS-induced phosphorylation of nuclear factor-kappa B (NF-κB)/p65 was significantly decreased, whereas NF-κB luciferase activities were slightly inhibited, by GS12021 treatment in RAW 264.7 cells. Either mitogen-activated protein kinase phosphorylation or AP-1 luciferase activity was not altered by GS12021. GS12021 increased the phosphorylation of AMP-activated protein kinase (AMPK) α and the expression of sirtuin (SIRT) 1. Inhibition of mRNA expression of inflammatory genes by GS12021 was abolished in AMPKα1-knockdown cells, but not in SIRT1 knockout cells, demonstrating that GS12021 exerts anti-inflammatory effects through AMPKα activation. The transwell migration assay results showed that GS12021 treatment of macrophages prevented the cell migration promoted by incubation with conditioned medium obtained from adipocytes. GS12021 suppression of p65 phosphorylation and macrophage chemotaxis were preserved in AMPKα1-knockdown cells, indicating AMPK is not required for these functions of GS12021. Identification of this novel methylhonokiol analog could enable studies of the structure-activity relationship of this class of compounds and further evaluation of its in vivo potential for the treatment of insulin-resistant states and other chronic inflammatory diseases. 相似文献
16.
Varun Kumar Yi-Chinn Weng Werner J. Geldenhuys Dan Wang Xiqian Han Robert O. Messing Wen-Hai Chou 《The Journal of biological chemistry》2015,290(4):1936-1951
To better study the role of PKCδ in normal function and disease, we developed an ATP analog-specific (AS) PKCδ that is sensitive to specific kinase inhibitors and can be used to identify PKCδ substrates. AS PKCδ showed nearly 200 times higher affinity (Km) and 150 times higher efficiency (kcat/Km) than wild type (WT) PKCδ toward N6-(benzyl)-ATP. AS PKCδ was uniquely inhibited by 1-(tert-butyl)-3-(1-naphthyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1NA-PP1) and 1-(tert-butyl)-3-(2-methylbenzyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (2MB-PP1) but not by other 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) analogs tested, whereas WT PKCδ was insensitive to all PP1 analogs. To understand the mechanisms for specificity and affinity of these analogs, we created in silico WT and AS PKCδ homology models based on the crystal structure of PKCι. N6-(Benzyl)-ATP and ATP showed similar positioning within the purine binding pocket of AS PKCδ, whereas N6-(benzyl)-ATP was displaced from the pocket of WT PKCδ and was unable to interact with the glycine-rich loop that is required for phosphoryl transfer. The adenine rings of 1NA-PP1 and 2MB-PP1 matched the adenine ring of ATP when docked in AS PKCδ, and this interaction prevented the potential interaction of ATP with Lys-378, Glu-428, Leu-430, and Phe-633 residues. 1NA-PP1 failed to effectively dock within WT PKCδ. Other PP1 analogs failed to interact with either AS PKCδ or WT PKCδ. These results provide a structural basis for the ability of AS PKCδ to efficiently and specifically utilize N6-(benzyl)-ATP as a phosphate donor and for its selective inhibition by 1NA-PP1 and 2MB-PP1. Such homology modeling could prove useful in designing molecules to target PKCδ and other kinases to understand their function in cell signaling and to identify unique substrates. 相似文献
17.
Sohel M Julovi Kaitlin Shen Kelly McKelvey Nikita Minhas Lyn March Christopher J Jackson 《Molecular medicine (Cambridge, Mass.)》2013,19(1):324-331
Synovial fibroblast proliferation is a hallmark of the invasive pannus in the rheumatoid joint. Activated protein C (APC) is a natural anticoagulant that exerts antiinflammatory and cyto-protective effects in various diseases via endothelial protein C receptor (EPCR) and proteinase-activated receptor (PAR)-mediated pathways. In this study, we investigated the effect and the underlying cellular signaling mechanisms of APC on proliferation of human rheumatoid synovial fibroblasts (RSFs). We found that APC stimulated proliferation of mouse dermal fibroblasts (MDFs) and normal human dermal fibroblasts (HDFs) by up to 60%, but robustly downregulated proliferation of RSFs. APC induced the phosphorylation of extracellular signal–regulated protein kinase (ERK) and enhanced expression of p21 and p27 in a dose-dependent manner in RSFs. The latter effect was inhibited by pre-treatment with the ERK inhibitors PD98059 and U0126 but not by p38 inhibitor SB203580. In addition, APC significantly downregulated tumor necrosis factor (TNF)α-stimulated cell proliferation and activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in RSFs. These results provide the first evidence that APC selectively inhibits proliferation and the inflammatory signaling pathways of RSFs. Thus, APC may reduce synovial hyperplasia and pannus invasion in rheumatoid arthritis. 相似文献
18.
19.
Lourdes Alvarez-Arellano Pedro Cortés-Reynosa Norma Sánchez-Zauco Eduardo Salazar Javier Torres Carmen Maldonado-Bernal 《PloS one》2014,9(7)
Helicobacter pylori infection represents one of the most common bacterial infections worldwide. The inflammatory response to this bacterium involves a large influx of neutrophils to the lamina propria of the gastric mucosa. However, little is known about the receptors and molecular mechanisms involved in activation of these neutrophils. In this study, we aimed to determine the role of toll-like receptor 9 (TLR9) in the response of human neutrophils to H. pylori and purified H. pylori DNA (Hp-DNA). Neutrophils were isolated from the blood of adult volunteers and challenged with either H. pylori or Hp-DNA. We found that both, H. pylori and Hp-DNA induced increased expression and release of IL-8. Furthermore, we showed that TLR9 is involved in the induction of IL-8 production by H. pylori and Hp-DNA. IL-8 production induced by H. pylori but not by Hp-DNA was partially mediated by NF-κB. In conclusion, this study showed for first time that both, H. pylori and Hp-DNA activate TLR9 and induce a different inflammatory response that leads to activation of neutrophils. 相似文献
20.
Kellie J. Hall Matthew T. Harper Karen Gilio Judith M. Cosemans Johan W. M. Heemskerk Alastair W. Poole 《PloS one》2008,3(9)