首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The peroxidase-antiperoxidase (PAP) method, and a specific monoclonal antibody (192-IgG) were used to determine the localization of nerve growth factor receptor (NGFr) in the skeletal muscles of the adult rats. The rectus femoris and the gastrocnemius (medialis and lateralis) muscles were analyzed. Occurrence of NGFr immunoreactivity was observed in: 1) a subpopulation of myelinated nerve fibers within muscle nerve trunks; 2) the vascular adventitia and nerve-like profiles around the blood vessels; 3) the outer capsule and the surface of the intrafusal muscle fibers of muscle spindles. Conversely, images, suggesting the presence of NGFr on muscle fibers or in motor end-plates, were not found. Our results suggest the presence of NGF-binding sites in sensory and sympathetic nerve fibers, and/or their target tissues localized on the skeletal muscles of the rat, whereas the motor nerve fibers lack of NGFr. The dependence of sympathetic neurons, proprioceptive primary sensory neurons, and motoneurons innervating the mammalian muscles upon NGF or other neurotrophic factors is discussed.  相似文献   

4.
Nerve fiber innervation of the scar following myocardial damage may have occurred either via the growth of pre-existing fibers and/or the mobilization of neural stem cells. The present study examined whether neural stem cells were recruited to the infarct region of the rat heart following coronary artery ligation. The neural stem cell marker nestin was detected in the infarct region of 1-week post-myocardial infarct (MI) male rats and cultured scar-derived neural-like cells. By contrast, nestin staining was undetected in either scar myofibroblasts or cardiac myocytes residing in the non-infarcted left ventricle. Reactive astrocytes were isolated from the infarct region and characterized by the co-expression of nestin, glial fibrillary acidic protein, and vimentin. Specific staining of oligodendrocytes and neurons was also detected in the infarct region and cultured scar-derived neural-like cells. Furthermore, neurofilament-M positive fibers were identified in the scar and tyrosine hydroxylase immunoreactivity was observed in peripherin-positive neurons. Neurite formation was induced in PC12 cells treated with the conditioned-media of primary passage scar-derived cells, highlighting the synthesis and secretion of neurotrophic factors. Nerve growth factor (NGF) and brain-derived neurotrophic factor were detected in myofibroblasts and neural cells, and both cell types expressed the NGF receptors trkA and p75. These data highlight the novel observation that neural stem cells were recruited to the infarct region of the damaged rat heart and may contribute in part to nerve fiber growth and subsequent innervation of the scar.  相似文献   

5.
Postganglionic sympathetic axons display a remarkable ability for new collateral growth in response to local increases in nerve growth factor (NGF). Elevating NGF levels within the brain also induces the directional growth of sympathetic axons, but not within myelinated pathways of adult mammals. In this investigation, we provide in vivo evidence that sympathetic axons are capable of NGF-induced collateral growth through the microenvironment of mature myelinated pathways, especially in the absence of the p75 neurotrophin receptor (NTR). In transgenic mice overexpressing NGF centrally and expressing p75NTR, only a few varicose sympathetic axons invade the optic tract after the first month of postnatal life. In other transgenic mice overexpressing NGF centrally but lacking p75NTR expression, the incidence of sympathetic axons within this myelinated tract substantially increases. Moreover, numerous unmyelinated sympathetic axons cluster together to form large processes extending through the optic tract; such structures are first seen 8 weeks after birth. Only these large axon bundles display prominent immunostaining for GAP-43, which is preferentially localized to the sympathetic fibers, since nonmyelinating Schwann cells are not associated with these axon bundles. These data provide the first direct evidence that sympathetic axons are indeed capable of NGF-induced collateral growth into myelinated tracts of mature mammals, and that their continued growth through this microenvironment is markedly enhanced by the absence of p75NTR expression. We propose that p75NTR among sympathetic axons may either directly or indirectly limit collateral branching of these fibers in response to increased levels of NGF.  相似文献   

6.
The field of neurotrophins, particularly, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), has witnessed a number of breakthroughs in recent years. There is evidence now that NGF and BDNF mediate multiple biological phenomena, ranging from the Rita Levi Montalcini's neurotrophic through immunotrophic to epitheliotrophic and nociceptive effects. In 2003 we, for the first time, enriched the "NGFome" with one more expression presented in our concept of NGF metabotrophicity, also that of BDNF. This envisages that these two factors may operate as metabotrophins, that is, involved in the maintenance of cardiometabolic homeostasis (glucose and lipid metabolism as well as energy balance, cardioprotection, and wound healing). Recent results also demonstrated that the circulating and/or tissue levels of NGF and BDNF are altered in cardiometabolic diseases (atherosclerosis, obesity, type 2 diabetes, metabolic syndrome, and type 3 diabetes). Altogether, a hypothesis of metabotrophic deficit due to the reduction of NGF/BDNF availability and/or utilization was raised, and implicated in the pathogenesis of cardiometabolic diseases. This may cultivate a novel pathogenic and therapeutic thinking for these diseases.  相似文献   

7.
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), and NT4/5 are all found in the developing cerebellum. Granule cells, the major target neurons of mossy fibers, express BDNF during mossy fiber synaptogenesis. To determine whether neurotrophins contribute to the development of cerebellar afferent axons, we characterized the effects of neurotrophins on the growth of mossy fiber neurons from mice and rats in vitro. For a mossy fiber source, we used the basilar pontine nuclei (BPN), the major source of cerebellar mossy fibers in mammals. BDNF and NT4/5 increased BPN neuron survival, neurite outgrowth, growth cone size, and elongation rate, while neither NT3 nor NGF increased survival or outgrowth. In addition, BDNF and NT4/5 reduced the size of neurite bundles. Consistent with these effects, in situ hybridization on cultured basilar pontine neurons revealed the presence of mRNA encoding the TrkB receptor which binds both BDNF and NT4/5 with high affinity. We detected little or no message encoding the TrkC receptor which preferentially binds NT3. BDNF and NT4/5 also increased TrkB mRNA levels in BPN neurons. In addition to previously established functions as an autocrine/paracrine trophic factor for granule cells, the present results indicate that cerebellar BDNF may also act as a target-derived trophic factor for basilar pontine mossy fibers.  相似文献   

8.
Postganglionic sympathetic axons display a remarkable ability for new collateral growth in response to local increases in nerve growth factor (NGF). Elevating NGF levels within the brain also induces the directional growth of sympathetic axons, but not within myelinated pathways of adult mammals. In this investigation, we provide in vivo evidence that sympathetic axons are capable of NGF‐induced collateral growth through the microenvironment of mature myelinated pathways, especially in the absence of the p75 neurotrophin receptor (NTR). In transgenic mice overexpressing NGF centrally and expressing p75NTR, only a few varicose sympathetic axons invade the optic tract after the first month of postnatal life. In other transgenic mice overexpressing NGF centrally but lacking p75NTR expression, the incidence of sympathetic axons within this myelinated tract substantially increases. Moreover, numerous unmyelinated sympathetic axons cluster together to form large processes extending through the optic tract; such structures are first seen 8 weeks after birth. Only these large axon bundles display prominent immunostaining for GAP‐43, which is preferentially localized to the sympathetic fibers, since nonmyelinating Schwann cells are not associated with these axon bundles. These data provide the first direct evidence that sympathetic axons are indeed capable of NGF‐induced collateral growth into myelinated tracts of mature mammals, and that their continued growth through this microenvironment is markedly enhanced by the absence of p75NTR expression. We propose that p75NTR among sympathetic axons may either directly or indirectly limit collateral branching of these fibers in response to increased levels of NGF. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 51–66, 1999  相似文献   

9.
《Bioscience Hypotheses》2008,1(5):251-254
Xerostomia, or loss of saliva, can lead to degeneration of taste papillae on the tongue. Saliva contains neurotrophic factors such as nerve growth factor and epidermal growth factor. These neurotrophic factors are likely to be important for the maintenance of the peripheral nervous system. Furthermore, neurotrophic support of peripheral nerves by salivary neurotrophic factors may then be translated into neurotrophic support of the central nervous system. We propose that artificial saliva used to treat xerostomia should also contain suitable neurotrophic factors to prevent loss of taste sensation and possibly also prevent neuropathy of the central and peripheral nervous systems.  相似文献   

10.
Expression patterns of neurotrophic factor mRNAs in developing human teeth   总被引:5,自引:0,他引:5  
Neurotrophic factors regulate survival, differentiation, growth and plasticity in the nervous system. In addition, based on their specific and shifting temporospatial expression patterns, neurotrophic factors have been implicated in morphogenetic events during tooth development in rodents. To determine whether these findings in rodents could be related to humans, we have now studied nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), glial cell-line derived neurotrophic factor (GDNF), and neurturin (NTN) mRNA expression patterns in developing human teeth during gestational weeks 6.5-11. Using in situ hybridization histochemistry, we found distinct and specific patterns of neurotrophin and GDNF mRNA expression in the developing human teeth. NGF mRNA labeling was weak and confined predominantly to the dental papilla. BDNF mRNA labeling was stronger than NGF mRNA and was seen in the mesenchyme located lateral to the dental organ, as well as in epithelial structures (inner dental epithelium and enamel knot). NT-3 mRNA was observed in the dental papilla and in the area of the cervical loop. NT-4 mRNA was expressed in both oral and dental epithelia in all stages studied. GDNF mRNA was found in the dental follicle and at different sites in the inner dental epithelium. Weak NTN mRNA labeling was also found in the developing teeth. Based on these findings, we suggest that neurotrophins, GDNF and NTN might be involved in morphogenetic events during early stages of tooth development in humans. Protein gene product (PGP) 9.5-immunoreactive nerve fibers were observed in the dental follicle by 11 weeks coinciding with the labeling for neurotrophic factor mRNAs in this structure. This suggests that these neurotrophic factors might be involved in the innervation of dental structures. The rich expression of neurotrophic factors in developing dental tissues suggests that developing, or possibly adult, dental tissue might be used as an allograft source of trophic support for diseases of the nervous system.  相似文献   

11.
This article summarizes and interprets recent data from our laboratories suggesting that transforming growth factor-ss (TGF-ss1, -ss2, -ss3) is essentially required, in vitro and in vivo, for the neurotrophic signaling of glial cell line-derived neurotrophic factor (GDNF). TGF-ss, which is synthesized by and released from neurons, also synergizes with neurotrophins and members of the neurokine and fibroblast growth factor families by increasing their efficacies. However, when applied to purified neuron populations without other factors being added, TGF-ss does not promote survival or differentiation. Together, these data suggest that neither TGF-ss nor GDNF fulfil essential criteria of a typical neurotrophic factor, as e.g. nerve growth factor (NGF). Moreover, the neurotrophic activity of NGF and other classic neurotrophic factors is apparently based, to a significant extent, on their co-operativity with TGF-ss. Mechanisms, by which TGF-ss generates neurotrophic effects and synergizes with other cytokines are beginning to emerge. Recruitment and/or stabilization of receptors and cross-talks at different levels of signal transduction are likely to be implied in generating the neurotrophic potential of the TGF-ss/cytokine synergisms. Together, these data outline a novel role of TGF-ss in a key event of nervous system development, ontogenetic neuron death. Conceptually more important, however, may be the broadening of the neurotrophic factor concept, which now has to imply the possibility that two cytokines, each being ineffective by itself, become neurotrophically active when acting in concert.  相似文献   

12.
It is generally believed that the mechanism of action of neurotrophic factors involves uptake of neurotrophic factor by nerve terminals and retrograde transport through the axon and back to the cell body where the factor exerts its neurotrophic effect. This view originated with the observation almost 20 years ago that nerve growth factor (NGF) is retrogradely transported by sympathetic axons, arriving intact at the neuronal cell bodies in sympathetic ganglia. However, experiments using compartmented cultures of rat sympathetic neurons have shown that neurite growth is a local response of neurites to NGF locally applied to them which does not directly involve mechanisms in the cell body. Recently, several NGF-related neurotrophins have been identified, and several unrelated molecules have been shown to act as neurotrophic or differentiation factors for a variety of types of neurons in the peripheral and central nervous systems. It has become clear that knowledge of the mechanisms of action of these factors will be crucial to understanding neurodegenerative diseases and the development of treatments as well as the means to repair or minimize neuronal damage after spinal injury. The concepts derived from work with NGF suggest that the site of exposure of a neuron to a neurotrophic factor is important in determining its response. 1994 John Wiley & Sons, Inc.  相似文献   

13.
Shortly after neurons begin to innervate their targets in the developing vertebrate nervous system they become dependent on the supply of a neurotrophic factor, such as nerve growth factor (NGF) for survival. Recently, Martin et al. (1988) have shown that inhibiting protein synthesis prevents the death of NGF-deprived sympathetic neurons, suggesting that NGF promotes neuronal survival by suppressing an active cell death program. To determine if other neurotrophic factors may regulate neuronal survival by a similar mechanism we examined the effects of inhibiting protein and RNA synthesis in other populations of embryonic neurons that require different neurotrophic factors, namely: 1) trigeminal mesencephalic neurons, a population of proprioceptive neurons that are supported by brain-derived neurotrophic factor; 2) dorsomedial trigeminal ganglion neurons, a population of cutaneous sensory neurons that are supported by NGF; 3) and ciliary ganglion neurons, a population of parasympathetic neurons that are supported by ciliary neuronotrophic factor. Blocking either protein or RNA synthesis rescued all three populations of neurons from cell death induced by neurotrophic factor deprivation in vitro. Thus, at least three different neurotrophic factors appear to promote survival by a similar mechanism that may involve the suppression of an endogenous cell death program.  相似文献   

14.
The nerve growth factor (NGF) family and ciliary neurotrophic factor (CNTF) support survival and/or neurite outgrowth of many cell types. However, it is not known whether the neurite outgrowth induced by neurotrophic factors results in the formation of synapses. We tested NGF and CNTF for their ability to induce neurite outgrowth and synapse formation in vitro by interneurons from the mollusc Lymnaea. Dopaminergic and peptidergic interneurons survived in the absence of neurotrophic factors but exhibited robust outgrowth in response to both NGF and CNTF. Chemical synapses formed between these interneurons and their target neurons cultured in NGF, but synapses were absent in CNTF. Survival, neurite outgrowth, and synaptogenesis are therefore differentially regulated in these neurons. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The neurotrophins nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT3), and NT4/5 are all found in the developing cerebellum. Granule cells, the major target neurons of mossy fibers, express BDNF during mossy fiber synaptogenesis. To determine whether neurotrophins contribute to the development of cerebellar afferent axons, we characterized the effects of neurotrophins on the growth of mossy fiber neurons from mice and rats in vitro. For a mossy fiber source, we used the basilar pontine nuclei (BPN), the major source of cerebellar mossy fibers in mammals. BDNF and NT4/5 increased BPN neuron survival, neurite outgrowth, growth cone size, and elongation rate, while neither NT3 nor NGF increased survival or outgrowth. In addition, BDNF and NT4/5 reduced the size of neurite bundles. Consistent with these effects, in situ hybridization on cultured basilar pontine neurons revealed the presence of mRNA encoding the TrkB receptor which binds both BDNF and NT4/5 with high affinity. We detected little or no message encoding the TrkC receptor which preferentially binds NT3. BDNF and NT4/5 also increased TrkB mRNA levels in BPN neurons. In addition to previously established functions as an autocrine/paracrine trophic factor for granule cells, the present results indicate that cerebellar BDNF may also act as a target‐derived trophic factor for basilar pontine mossy fibers. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 254–269, 1999  相似文献   

16.
The availability of relatively large amounts of nerve growth factor (NGF) has allowed extensive in vitro and in vivo characterization of the neuronal specificity of this neurotrophic factor. The restricted neuronal specificity of NGF (sympathetic neurons, neural crest-derived sensory neurons, basal forebrain cholinergic neurons) has long predicted the existence of other neurotrophic factors possessing different neuronal specificities. Whereas there have been many reports of "activities" distinct from NGF, full characterization of such molecules has been hampered by their extremely low abundance. The recent molecular cloning of brain-derived neurotrophic factor (BDNF) revealed that this protein is closely related to NGF and suggested that these two factors might be members of an even larger gene family. A PCR cloning strategy based on homologies between NGF and BDNF has allowed us to identify and clone a third member of the NGF family which we have termed neurotrophin-3 (NT-3). The establishment of suitable expression systems has now made available sufficient quantities of these proteins to allow us to begin to establish the neuronal specificity of each member of the neurotrophin family, and the role of each in development, maintenance and repair of the PNS and CNS. Using primary cultures of various PNS and CNS regions of the developing chick and rat, and Northern blot analysis, we describe novel neuronal specificities of BDNF, NT-3 and an unrelated neurotrophic factor-ciliary neurotrophic factor (CNTF).  相似文献   

17.
To study in vivo effect of methylcobalamin (CH3-B12) on the peripheral nerve structures, rats with experimental diabetes induced by streptozotocin were administered with daily intramuscular injection of CH3-B12 (500 microgram/kg) for 16 weeks. By isolated nerve fiber studies, CH3-B12-treated diabetic rats showed less incidence of paranodal demyelination as an early sign of segmental demyelination than non-treated diabetic rats. From morphometrical analysis on sural nerves, the reduction in the density of myelinated nerve fibers, nerve fiber size and axon size of myelinated fibers was definitely protected in treated diabetic rats. The results suggested that continuous treatment with CH3-B12 had an ameliorative effect on the peripheral nerve lesions in experimental diabetic neuropathy.  相似文献   

18.
Several factors have been proposed to account for poor motor recovery after prolonged denervation, including motor neuron cell death and incomplete or poor regeneration of motor fibers into the muscle. Both may result from failure of the muscle and the distal motor nerve stump to continue expression of neurotrophic factors following delayed muscle reinnervation. This study investigated whether regenerating motor or sensory axons modulate distal nerve neurotrophic factor expression. We found that transected distal tibial nerve up-regulated brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) mRNA, down-regulated neurotrophin-3 and ciliary neurotrophic factor mRNA, and that although these levels returned to normal with regeneration, the chronically denervated distal nerve stump continued to express these neurotrophic factors for at least 6 months following injury. A sensory nerve (the cutaneous saphenous nerve) sutured to distal tibial nerve lowered injury-induced BDNF and GDNF mRNA levels in distal stump, but repair with a mixed nerve (peroneal, containing muscle and cutaneous axons) was more effective. Repair with sensory or mixed nerves did not affect nerve growth factor or neurotrophin-3 expression. Thus, distal nerve contributed to a neurotrophic environment for nerve regeneration for at least 6 months, and sensory nerve repair helped normalize distal nerve neurotrophic factor mRNA expression following denervation. Furthermore, as BDNF and GDNF levels in distal stump increased following denervation and returned to control levels following reinnervation, their levels serve as markers for the status of regeneration by either motor or sensory nerve.  相似文献   

19.
Role of growth factors in the development of diabetic complications   总被引:24,自引:0,他引:24  
The structural changes characterising diabetic microangiopathy, which may be referred to as 'abnormal growth' and 'impaired regeneration', strongly suggest a role for a number of aberrantly expressed growth factors, possibly acting in combination, in the development of these complications. This initial speculation has been supported by the detection of increased concentrations of several growth factors in the target tissues of diabetic long-term complications, and by enhanced expression of these growth factors consequent to the activation of the biochemical pathways linking hyperglycaemia to microvascular changes: the polyol pathway; non-enzymatic glycation of proteins; vasoactive hormones; oxidative stress, and hyperglycaemic pseudohypoxia. As to nephropathy, insulin-like growth factor I (IGF-I) seems to be implicated in the earlier stages of the disease, while transforming growth factor beta (TGF beta) is involved both in the early and later stages, being responsible, at least in part, for extracellular matrix (ECM) accumulation. Vascular endothelial growth factor (VEGF) plays a pivotal role both in non-proliferative and proliferative retinopathy. Finally, deficiency of several neurotrophic factors, namely nerve growth factor (NGF) and IGF-I has been related to the degeneration or impaired regeneration occurring in diabetic neuropathy. Knowledge of the involvement of growth factors in diabetic microangiopathy opens the way to new therapeutic interventions aimed at blocking the deleterious actions of several growth factors.  相似文献   

20.
Pharmacological treatment is a therapeutic approach to improving nerve regeneration and functional recovery after peripheral nerve crush injury. The objective of the present study was to investigate the effects of the polypeptides isolated from Achyranthes bidentata Blume (abbreviated as ABPP) on rat sciatic crush injury and to test the possible involvement of neurotrophic factors. After surgical crush injury, rats received daily intraperitoneal injection of 0.2 ml saline containing 2 mg ABPP, 1 μg nerve growth factor (NGF) or no additive. The results from walking track analysis, electrophysiological assessment and histological evaluation indicated that the repair outcomes by ABPP treatment were close to those by NGF treatment, but better than those by treatment with saline alone. The quantitative real-time RT-PCR was used to monitor the mRNA expression of growth associated protein in the crush nerves and the mRNA expression of NGF, brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), tyrosine kinase (Trk)A and TrkB in the dorsal root ganglia (DRGs) at L4–L6. The mRNA expression of these genes in the crush nerve sample and DRGs sample was higher after treatment with ABPP or NGF than after treatment with saline alone. Our findings suggest that ABPP might protect peripheral nerve against crush injury through stimulating release of neurotrophic factors and the other cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号