共查询到20条相似文献,搜索用时 15 毫秒
1.
Michelle L. Van Sinderen Gregory R. Steinberg Sebastian B. J?rgensen Jane Honeyman Jenny D. Chow Kerrie A. Herridge Amy L. Winship Evdokia Dimitriadis Margaret E. E. Jones Evan R. Simpson Wah Chin Boon 《PloS one》2015,10(8)
The maintenance of glucose homeostasis within the body is crucial for constant and precise performance of energy balance and is sustained by a number of peripheral organs. Estrogens are known to play a role in the maintenance of glucose homeostasis. Aromatase knockout (ArKO) mice are estrogen-deficient and display symptoms of dysregulated glucose metabolism. We aim to investigate the effects of estrogen ablation and exogenous estrogen administration on glucose homeostasis regulation. Six month-old female wildtype, ArKO, and 17β-estradiol (E2) treated ArKO mice were subjected to whole body tolerance tests, serum examination of estrogen, glucose and insulin, ex-vivo muscle glucose uptake, and insulin signaling pathway analyses. Female ArKO mice display increased body weight, gonadal (omental) adiposity, hyperinsulinemia, and liver triglycerides, which were ameliorated upon estrogen treatment. Tolerance tests revealed that estrogen-deficient ArKO mice were pyruvate intolerant hence reflecting dysregulated hepatic gluconeogenesis. Analyses of skeletal muscle, liver, and adipose tissues supported a hepatic-based glucose dysregulation, with a down-regulation of Akt phosphorylation (a key insulin signaling pathway molecule) in the ArKO liver, which was improved with E2 treatment. Concurrently, estrogen treatment lowered ArKO serum leptin and adiponectin levels and increased inflammatory adipokines such as tumour necrosis factor alpha (TNFα) and interleukin 6 (IL6). Furthermore, estrogen deficiency resulted in the infiltration of CD45 macrophages into gonadal adipose tissues, which cannot be reversed by E2 treatment. This study describes the effects of estrogens on glucose homeostasis in female ArKO mice and highlights a primary phenotype of hepatic glucose dysregulation and a parallel estrogen modified adipokine profile. 相似文献
2.
Background
Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes.Objectives
The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters.Methods
Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system.Results
Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density.Conclusion
Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain. 相似文献3.
4.
Krisstonia Spruiell Ricardo M. Richardson John M. Cullen Emmanuel M. Awumey Frank J. Gonzalez Maxwell A. Gyamfi 《The Journal of biological chemistry》2014,289(6):3244-3261
Clinical obesity is a complex metabolic disorder affecting one in three adults. Recent reports suggest that pregnane X receptor (PXR), a xenobiotic nuclear receptor important for defense against toxic agents and for eliminating drugs and other xenobiotics, may be involved in obesity. Noting differences in ligand specificities between human and mouse PXRs, the role of PXR in high fat diet (HFD)-induced obesity was examined using male PXR-humanized (hPXR) transgenic and PXR-knock-out (PXR-KO) mice in comparison to wild-type (WT) mice. After 16 weeks on either a control diet or HFD, WT mice showed greater weight gain, whereas PXR-KO mice gained less weight due to their resistance to HFD-induced decreases in adipose tissue peroxisome proliferator-activated receptor α and induction of hepatic carnitine palmitoyltransferase 1, suggesting increased energy metabolism. Interestingly, control-fed PXR-KO mice exhibited hepatomegaly, hyperinsulinemia, and hyperleptinemia but hypoadiponectinemia and lower adiponectin receptor R2 mRNA levels relative to WT mice. Evaluation of these biologic indicators in hPXR mice fed a control diet or HFD revealed further differences between the mouse and human receptors. Importantly, although HFD-fed hPXR mice were resistant to HFD-induced obesity, both PXR-KO and hPXR mice exhibited impaired induction of glucokinase involved in glucose utilization and displayed elevated fasting glucose levels and severely impaired glucose tolerance. Moreover, the basal hepatic levels of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 were increased in hPXR mice compared with WT mice. Altogether, although the mouse PXR promotes HFD-induced obesity, the hPXR mouse carries a genetic predisposition for type 2 diabetes and thus provides a model for exploring the role of human PXR in the metabolic syndrome. 相似文献
5.
Collin Homer-Bouthiette Thomas Doetschman Liping Xiao Marja M. Hurley 《The Journal of biological chemistry》2014,289(52):36303-36314
We previously reported that targeted overexpression of the fibroblast growth factor 2 (FGF2) high molecular weight (HMW) isoforms in osteoblastic lineage cells in mice resulted in phenotypic changes, including dwarfism, rickets, osteomalacia, hypophosphatemia, increased serum parathyroid hormone, and increased levels of the phosphatonin FGF23 in serum and bone. This study examined the effects of genetically knocking out the FGF2HMW isoforms (HMWKO) on bone and phosphate homeostasis. HMWKO mice were not dwarfed and had significantly increased bone mineral density and bone mineral content in femurs and lumbar vertebrae when compared with the wild-type (WT) littermates. Micro-computed tomography analysis of femurs revealed increased trabecular bone volume, thickness, number, and connective tissue density with decreased trabecular spacing compared with WT. In addition, there was significantly decreased cortical porosity and increased cortical thickness and sub-periosteal area in femurs of HMWKO. Histomorphometric analysis demonstrated increased osteoblast activity and diminished osteoclast activity in the HMWKO. In vitro bone marrow stromal cell cultures showed there was a significant increase in alkaline phosphatase-positive colony number at 1 week in HMWKO. At 3 weeks of culture, the mineralized area was also significantly increased. There was increased expression of osteoblast differentiation marker genes and reduced expression of genes associated with impaired mineralization, including a significant reduction in Fgf23 and Sost mRNA. Normal serum phosphate and parathyroid hormone were observed in HMWKO mice. This study demonstrates a significant negative impact of HMWFGF2 on biological functions in bone and phosphate homeostasis in mice. 相似文献
6.
MethodsTo investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet.ResultsRYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance. 相似文献
7.
Effects of Selenium Supplementation on Antioxidant Defense and Glucose Homeostasis in Experimental Diabetes Mellitus 总被引:1,自引:0,他引:1
Erbayraktar Z Yilmaz O Artmann AT Cehreli R Coker C 《Biological trace element research》2007,118(3):217-226
The objective of this study was to investigate the effects of different forms of Se supplementation on the antioxidant defense
and glucose homeostasis in experimental diabetes. Sodium selenate (SS) or selenomethionine (SM) were administered (2 μmol
Se kg−1 day−1) via orogastric route to streptozotocine (STZ)-induced diabetic rats in addition to basal diet for 12 weeks. Glucose levels
in whole blood, glutathione peroxidase (GSH-Px) activity in erythrocytes, Se and fructosamine levels in plasma were evaluated
monthly. Plasma Se levels increased significantly in all diabetic groups compared to basal measurements, being more prominent
in SM group [p(SM3/SM0) = 0.018]. The increase in GSH-Px activities was significant at the end of the second month in SS [p(SS2/SS0) = 0.028], whereas at the end of the third month in SM the value was lower [p(SM3/SM0) = 0.018] and the unsupplemented diabetic control (DC) groups, p(DC3/DC0) = 0.012. Glucose increased significantly only in DC group. Fructosamine increased gradually in all diabetic groups, being
significant in DC and SS groups. At the end of the third month, highest fructosamine levels were observed in SS group, which
were significantly higher than the SM group [p(SM/SS) = 0.010]. In conclusion, Se augmented the antioxidant defense by increasing
GSH-Px activity and this effect was more prominent when Se was supplemented as SM, which exerted positive effects also on
glucose homeostasis. 相似文献
8.
Kosuke Matsuo Mirela Delibegovic Izumi Matsuo Naoto Nagata Siming Liu Ahmed Bettaieb Yannan Xi Kazushi Araki Wentian Yang Barbara B. Kahn Benjamin G. Neel Fawaz G. Haj 《The Journal of biological chemistry》2010,285(51):39750-39758
The Src homology 2 domain-containing protein-tyrosine phosphatase Shp2 has been implicated in a variety of growth factor signaling pathways, but its role in insulin signaling has remained unresolved. In vitro studies suggest that Shp2 is both a negative and positive regulator of insulin signaling, although its physiological function in a number of peripheral insulin-responsive tissues remains unknown. To address the metabolic role of Shp2 in the liver, we generated mice with either chronic or acute hepatic Shp2 deletion using tissue-specific Cre-LoxP and adenoviral Cre approaches, respectively. We then analyzed insulin sensitivity, glucose tolerance, and insulin signaling in liver-specific Shp2-deficient and control mice. Mice with chronic Shp2 deletion exhibited improved insulin sensitivity and increased glucose tolerance compared with controls. Acute Shp2 deletion yielded comparable results, indicating that the observed metabolic effects are directly caused by the lack of Shp2 in the liver. These findings correlated with, and were most likely caused by, direct dephosphorylation of insulin receptor substrate (IRS)1/2 in the liver, accompanied by increased PI3K/Akt signaling. In contrast, insulin-induced ERK activation was dramatically attenuated, yet there was no effect on the putative ERK site on IRS1 (Ser612) or on S6 kinase 1 activity. These studies show that Shp2 is a negative regulator of hepatic insulin action, and its deletion enhances the activation of PI3K/Akt pathway downstream of the insulin receptor. 相似文献
9.
Adiponectin Mediates the Metabolic Effects of FGF21 on Glucose Homeostasis and Insulin Sensitivity in Mice 总被引:1,自引:0,他引:1
Zhuofeng Lin Haishan Tian Karen S.L. Lam Shaoqiang Lin Ruby C.L. Hoo Morichika Konishi Nobuyuki Itoh Yu Wang Stefan R. Bornstein Aimin Xu Xiaokun Li 《Cell metabolism》2013,17(5):779-789
10.
11.
The D variant of encephalomyocarditis virus (EMC-D virus) causes diabetes in mice by destroying pancreatic β cells. In mice infected with a low dose of EMC-D virus, macrophages play an important role in β-cell destruction by producing soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO). To investigate the role of NO and inducible NO synthase (iNOS) in the development of diabetes in EMC-D virus-infected mice, we infected iNOS-deficient DBA/2 mice with EMC-D virus (2 × 102 PFU/mouse). Mean blood glucose levels in EMC-D virus-infected iNOS-deficient mice and wild-type mice were 205.5 and 466.7 mg/dl, respectively. Insulitis and macrophage infiltration were reduced in islets of iNOS-deficient mice compared with wild-type mice at 3 days after EMC-D virus infection. Apoptosis of β cells was decreased in iNOS-deficient mice, as evidenced by reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. There were no differences in mRNA expression of antiapoptotic molecules Bcl-2, Bcl-xL, Bcl-w, Mcl-1, cIAP-1, and cIAP-2 between wild-type and iNOS-deficient mice, whereas expression of proapoptotic Bax and Bak mRNAs was significantly decreased in iNOS-deficient mice. Expression of IL-1β and TNF-α mRNAs was significantly decreased in both islets and macrophages of iNOS-deficient mice compared with wild-type mice after EMC-D virus infection. Nuclear factor κB was less activated in macrophages of iNOS-deficient mice after virus infection. We conclude that NO plays an important role in the activation of macrophages and apoptosis of pancreatic β cells in EMC-D virus-infected mice and that deficient iNOS gene expression inhibits macrophage activation and β-cell apoptosis, contributing to prevention of EMC-D virus-induced diabetes.Type 1 diabetes results from absolute insulin deficiency caused by destruction of insulin-producing pancreatic β cells. The D variant of encephalomyocarditis virus (EMC-D virus) induces diabetes in genetically susceptible strains of mice by infecting and destroying β cells (13-18). In mice infected with a low dose (1 × 102 PFU/mouse) of EMC-D virus, macrophages play a central role in the destruction of pancreatic β cells (4, 5, 13-15), as evidenced by a significant increase in the incidence of diabetes if macrophages are activated prior to viral infection and complete prevention of EMC-D virus-induced diabetes if macrophages are inactivated prior to viral infection (4). Additional studies found that selective EMC-D viral infection of pancreatic β cells results in an initial recruitment of macrophages into the islets, followed by infiltration of other immunocytes, including T cells, natural killer cells, and B cells (5).EMC-D virus infects and activates macrophages without replication (13) and induces the production of soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS), which play important roles in the destruction of β cells (14). These infected macrophages express significantly more iNOS than either IL-1β or TNF-α (13). Treatment of EMC-D virus-infected mice with the tyrosine kinase inhibitor AG126, which inhibits nitric oxide (NO) production in EMC-D virus-infected macrophages, decreases the expression of IL-1β and TNF-α in the pancreatic islets and the incidence of diabetes and insulitis compared with those in vehicle-treated control mice (13). As well, treatment of EMC-D virus-infected mice with an iNOS inhibitor decreases the incidence of diabetes (14). These results suggest that iNOS and NO significantly contribute to the destruction of pancreatic β cells in mice infected with a low dose of EMC-D virus, although their roles are not fully understood.To directly test whether iNOS and NO play a critical role in the pathogenesis of EMC-D virus-induced diabetes in mice, we used iNOS knockout (KO) DBA/2 mice. We found that iNOS-deficient mice infected with EMC-D virus (2 × 102 PFU/mouse) showed a significantly lower incidence of diabetes. There was reduced expression of IL-1β and TNF-α in macrophages and decreased infiltration of immunocytes in the islets of iNOS-deficient mice, resulting in reduced apoptosis of β cells compared with that in EMC-D virus-infected wild-type mice. This study provides direct evidence of a role of NO in the activation of macrophages by EMC-D viral infection and in the pathogenesis of low-dose (2 × 102 PFU/mouse) EMC-D virus-induced diabetes. 相似文献
12.
Wook-Dong Kim Yong-ho Lee Min-Hee Kim Sun-Young Jung Woo-Chan Son Seon-Joo Yoon Byung-Wan Lee 《PloS one》2012,7(12)
Aim
Glucagon is an essential regulator of hepatic glucose production (HGP), which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR), NPB112, on glucose homeostasis in diet-induced obese (DIO) mice.Methods
The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP.Results
Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min) compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min) in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment.Conclusions
A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes. 相似文献13.
14.
Maria Gisella Cavallo Federica Sentinelli Ilaria Barchetta Carmine Costantino Michela Incani Laura Perra Danila Capoccia Stefano Romeo Efisio Cossu Frida Leonetti Luciano Agati Marco G. Baroni 《PloS one》2012,7(12)
Background
Apelin is an adipokine that plays a role in the regulation of glucose homeostasis and in obesity. The relationship between apelin serum concentration and dysmetabolic conditions such as type 2 diabetes (T2D) is still controversial. Aims of our study are: 1) determine the circulating levels of apelin in a large cohort of Italian subjects with T2D, T1D and in non-diabetic controls; 2) identify putative metabolic determinants of modified apelin concentrations, in order to search possible mechanism of apelin control; 3) investigate changes in apelin levels in response to sharp modifications of glucose/insulin metabolism in T2D obese subjects before and 3 days after bariatric surgery.Methods
We recruited 369 subjects, 119 with T2D, 113 with T1D and 137 non-diabetic controls. All subjects underwent a complete clinical examination, including anthropometric and laboratory measurements. Serum apelin levels were determined by EIA (immunoenzyme assay).Results
Patients with T2D had significantly higher serum apelin levels compared to controls (1.23±1.1 ng/mL vs 0.91±0.7 ng/mL, P<0.001) and to T1D subjects (0.73±0.39 ng/mL, P<0.001). Controls and T1D subjects did not differ significantly in apelin levels. Apelin concentrations were directly associated with fasting blood glucose (FBG), body mass index (BMI), basal Disposition Index (DI-0), age, and diagnosis of T2D at bivariate correlation analysis. Multiple regression analysis confirmed that diagnosis of T2D, basal DI-0 and FBG were all determinants of serum apelin levels independently from age and BMI. Bariatric surgery performed in a subgroup of obese diabetic subjects (n = 12) resulted in a significant reduction of apelin concentrations compared to baseline levels (P = 0.01).Conclusions
Our study demonstrates that T2D, but not T1D, is associated with increased serum apelin levels compared to non-diabetic subjects. This association is dependent on impaired glucose homeostasis, and disappears after bariatric surgery, providing further evidence regarding the relationship between apelin and the regulation of glucose metabolism. 相似文献15.
16.
17.
目的探讨glutaredoxin-1(Grx-1)基因敲除小鼠的优化繁殖及子代鼠的鉴定方法,为进一步研究Grx-1在支气管肺发育不良(BPD)中的作用奠定基础。方法将从美国哈佛医学院引进的纯合子Grx-1基因敲除小鼠与野生型小鼠进行交配后得到的子一代小鼠同代间相互交配,繁殖出的子二代中将出现纯合子、杂合子以及野生型3种基因型。从出生起观察其生长发育情况,2周龄时剪尾提取基因组DNA,用PCR方法扩增目的基因片段,琼脂糖凝胶电泳结果判定基因型。结果 Grx-1纯合子小鼠的饲养繁殖取得成功,获得了一批Grx-1基因敲除纯合子小鼠。结论正确的饲养繁殖以及鉴定方法是获得Grx-1基因敲除纯合子小鼠的有效途径,为相关研究提供动物实验模型奠定了基础。 相似文献
18.
《Endocrine practice》2013,19(3):497-510
ObjectiveTo review the role of human large bowel microbacteria (microbiota) in the glucose homeostasis, to address vitamin D (VD) and prebiotics interactions with microbiota, and to summarize recent randomized clinical trials (RCTs) of VD and prebiotics supplementation in prediabetes (PreDM) and type 2 diabetes mellitus (T2DM).MethodsPrimary literature was reviewed in the following areas: composition and activity of human microbiota associated with PreDM and T2DM, interactions between microbiota and glucose homeostasis, the interaction of microbiota with VD/prebiotics, and RCTs of VD/prebiotics in subjects with PreDM or T2DM.ResultsThe human microbiota is comprised of 100 trillion bacteria with an aggregate genome that is 150-fold larger than the human genome. Data from the animal models and human studies reveal that an “obesogenic” diet results into the initial event of microbiota transformation from symbiosis to dysbiosis. The microbial antigens, such as Gram(-) bacteria and lipopolysaccharide (LPS), translocate to the host interior and trigger increased energy harvesting and Toll-like receptor (TLR) activation with subsequent inflammatory pathways signaling. The “double hit” of steatosis (ectopic fat accumulation) and “—itis” (inflammation) and contribution of “corisks” (e.g., vitamin D deficiency [VDD]) are required to activate molecular signaling, including impaired insulin signaling and secretion, that ends with T2DM and associated diseases. Dietary changes (e.g., prebiotics, VD supplementation) may ameliorate this process if initiated prior to the process becoming irreversible.ConclusionEmerging evidence suggests an important role of microbiota in glucose homeostasis. VD supplementation and prebiotics may be useful in managing PreDM and T2DM. (Endocr Pract. 2013;19:497-510) 相似文献
19.
Marina V. Kasaikina Dmitri E. Fomenko Vyacheslav M. Labunskyy Salil A. Lachke Wenya Qiu Juliet A. Moncaster Jie Zhang Mark W. Wojnarowicz Jr. Sathish Kumar Natarajan Mikalai Malinouski Ulrich Schweizer Petra A. Tsuji Bradley A. Carlson Richard L. Maas Marjorie F. Lou Lee E. Goldstein Dolph L. Hatfield Vadim N. Gladyshev 《The Journal of biological chemistry》2011,286(38):33203-33212
The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency. 相似文献
20.
Antoinette D. Hillian Megan R. McMullen Becky M. Sebastian Sanjoy Rowchowdhury Sangeeta R. Kashyap Philip R. Schauer John P. Kirwan Ariel E. Feldstein Laura E. Nagy 《The Journal of biological chemistry》2013,288(31):22565-22575
Complement activation is implicated in the development of obesity and insulin resistance, and loss of signaling by the anaphylatoxin C3a prevents obesity-induced insulin resistance in mice. Here we have identified C1q in the classical pathway as required for activation of complement in response to high fat diets. After 8 weeks of high fat diet, wild-type mice became obese and developed glucose intolerance. This was associated with increased apoptotic cell death and accumulation of complement activation products (C3b/iC3b/C3c) in liver and adipose tissue. Previous studies have shown that high fat diet-induced apoptosis is dependent on Bid; here we report that Bid-mediated apoptosis was required for complement activation in adipose and liver. Although C1qa deficiency had no effect on high fat diet-induced apoptosis, accumulation of complement activation products and the metabolic complications of high fat diet-induced obesity were dependent on C1q. When wild-type mice were fed a high fat diet for only 3 days, hepatic insulin resistance was associated with the accumulation of C3b/iC3b/C3c in the liver. Mice deficient in C3a receptor were protected against this early high fat diet-induced hepatic insulin resistance, whereas mice deficient in the negative complement regulator CD55/DAF were more sensitive to the high fat diet. C1qa−/− mice were also protected from high fat diet-induced hepatic insulin resistance and complement activation. Evidence of complement activation was also detected in adipose tissue of obese women compared with lean women. Together, these studies reveal an important role for C1q in the classical pathway of complement activation in the development of high fat diet-induced insulin resistance. 相似文献