首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells.  相似文献   

2.
3.
Thyroid hormone inhibits neonatal Sertoli cell proliferation and recent results have shown that thyroid hormone upregulates cyclin-dependent kinase inhibitors (CDKIs) p27Kip1 and p21Cip1 (also known as CDKN1B and CDKN1A, respectively) in neonatal Sertoli cells. This suggests that these CDKIs, which negatively regulate the cell cycle, could be critical in Sertoli cell proliferation. Consistent with this hypothesis, mice lacking p27Kip1 develop testicular organomegaly, but Sertoli cell numbers have not been determined. Likewise, effects of loss of p21Cip1 or both p27 and p21 on Sertoli cell number and testicular development were unknown. To determine if p27 and/or p21 regulate Sertoli cell proliferation, we measured Sertoli cell proliferation at Postnatal Day 16 and testis weight, Sertoli cell number, and daily sperm production (DSP) in 4-mo-old wild-type (WT), p21 knockout (p21KO), p27 knockout (p27KO), and p27/p21 double-knockout (DBKO) mice. Testis weights were increased 27%, 42%, and 86% in adult p21KO, p27KO, and DBKO mice, respectively, compared with WT. Sertoli cell number also was increased 48%, 126%, and 126% in p21KO, p27KO, and DBKO mice, respectively, versus WT. DSP in p21KO, p27KO, and DBKO testes also showed significant increases compared with WT mice. Although DSP was increased, there were increased spermatogenic defects observed in both p27KO and DBKO mice compared with WT. These data indicate that both p27 and p21 play an inhibitory role in regulating adult Sertoli cell number such that loss of either CDKI produces primary increases in Sertoli cell number and secondary increases in DSP and testis weight. Furthermore, loss of both CDKIs causes additive effects on DSP and testis weight, suggesting a central role for these CDKIs in testis development.  相似文献   

4.
5.
Members of the gamma2-herpesvirus family encode cyclin-like proteins that have the ability to deregulate mammalian cell cycle control. Here we report the key features of the viral cyclin encoded by Murine Herpesvirus 68, M cyclin. M cyclin preferentially associated with and activated cdk2; the M cyclin/cdk2 holoenzyme displayed a strong reliance on phosphorylation of the cdk T loop for activity. cdk2 associated with M cyclin exhibited substantial resistance to the cdk inhibitor proteins p21(Cip) and p27(Kip). Furthermore, M cyclin directed cdk2 to phosphorylate p27(Kip1) on threonine 187 (T187) and cellular expression of M cyclin led to down-regulation of p27(Kip1) and the partial subversion of the associated G1 arrest. Mutation of T187 to a non-phosphorylatable alanine rendered the p27(Kip1)-imposed G1 arrest resistant to M cyclin expression. Unlike the related K cyclin, M cyclin was unable to circumvent the G1 arrest associated with p21(Cip1) and was unable to direct its associated catalytic subunit to phosphorylate this cdk inhibitor. These results imply that M cyclin has properties that are distinct from other viral cyclins and that M cyclin expression alone is insufficient for S phase entry.  相似文献   

6.
The cyclin-dependent kinase (Cdk) inhibitors p21(Cip1) and p27(Kip1) have been proposed to exert redundant functions in cell cycle progression and differentiation programs, although nonoverlapping functions have also been described. To gain further insights into the relevant mechanisms and to detect possible functional differences between both proteins, we conditionally expressed p21(Cip1) and p27(Kip1) in K562, a multipotent human leukemia cell line. Temporal ectopic expression of either p21(Cip1) or p27(Kip1) arrested proliferation, inhibited Cdk2 and Cdk4 activities, and suppressed retinoblastoma phosphorylation. However, whereas p21(Cip1) arrested cells in both G(1) and G(2) cell cycle phases, p27(Kip1) blocked the G(1)/S-phase transition. Furthermore, although both p21(Cip1) and p27(Kip1) associated with Cdk6, only p27(Kip1) significantly inhibited its activity. Most importantly, each protein promoted differentiation along a distinct pathway; p21(Cip1) triggered megakaryocytic maturation, whereas p27(Kip1) resulted in the expression of erythroid markers. Consistently, p21(Cip1) and p27(Kip1) were rapid and transiently up-regulated when K562 cells are differentiated into megakaryocytic and erythroid lineages, respectively. These findings demonstrate distinct functions of p21(Cip1) and p27(Kip1) in cell cycle regulation and differentiation and indicate that these two highly related proteins possess unique biological activities and are not functionally interchangeable.  相似文献   

7.
The polyamines spermidine and spermine and their precursorputrescine are intimately involved in and are required for cell growthand proliferation. This study examines the mechanism by whichpolyamines modulate cell growth, cell cycle progression, and signaltransduction cascades. IEC-6 cells were grown in the presence orabsence ofDL--difluoromethylornithine(DFMO), a specific inhibitor of ornithine decarboxylase, which is thefirst rate-limiting enzyme for polyamine synthesis. Depletion ofpolyamines inhibited growth and arrested cells in theG1 phase of the cell cycle. Cellcycle arrest was accompanied by an increase in the level of p53 proteinand other cell cycle inhibitors, including p21Waf1/Cip1 andp27Kip1. Induction of cell cycleinhibitors and p53 did not induce apoptosis in IEC-6 cells, unlike manyother cell lines. Although polyamine depletion decreased the expressionof extracellular signal-regulated kinase (ERK)-2 protein, a sustainedincrease in ERK-2 isoform activity was observed. The ERK-1 proteinlevel did not change, but ERK-1 activity was increased inpolyamine-depleted cells. In addition, polyamine depletion induced thestress-activated proteinkinase/c-JunNH2-terminal kinase (JNK) type ofmitogen-activated protein kinase (MAPK). Activation of JNK-1 was theearliest event; within 5 h after DFMO treatment, JNK activity wasincreased by 150%. The above results indicate that polyamine depletioncauses cell cycle arrest and upregulates cell cycle inhibitors andsuggest that MAPK and JNK may be involved in the regulation of theactivity of these molecules.  相似文献   

8.
Cyclin-dependent kinase inhibitors, p21Cip1 and p27Kip1, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21Cip1 or p27Kip1 in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE−/− aortae, both apoE−/−/p21−/− and apoE−/−/p27−/− aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27Kip1 accelerated plaque formation significantly more than p21−/− in apoE−/− mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21Cip1 and p27Kip1 accelerates atherogenesis in apoE−/− mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.  相似文献   

9.
OBJECTIVE: In view of the controversial information on the significance of the cyclin-dependent kinase inhibitor p21Cip1 in ovarian cancer, we conducted a retrospective investigation to clarify the relationships of this protein to proliferation rate, clinicopathological variables and prognosis of epithelial ovarian tumors. METHODS: Paraffin-embedded tissue from 43 ovarian tumors of low malignant potential (LMP) and 82 primary ovarian adenocarcinomas were stained immunohistochemically for p21Cip1, p53 protein and Ki-67 antigen (a marker of cell proliferation). RESULTS: p21Cip1 levels were significantly higher in LMP tumors (p<0.001) as well as in early stage adenocarcinomas (p=0.021) and those associated with minimal residual disease (p=0.008). However, no relationship existed between p21Cip1 expression and the proliferation rate of adenocarcinomas or LMP tumors. In the vast majority of LMP tumors p21Cip1 expression was not accompanied by p53 accumulation. This p21Cip1-positive/p53-negative phenotype prevailed in the early stage (p=0.026), lower grade (p=0.018) adenocarcinomas as well as in those left with minimal residual disease (p=0.059). In patients with lower grade adenocarcinomas, decreased p21Cip1 expression was adversely related to poor overall survival on its own (p=0.0500) and when combined with p53 protein overexpression (p=0.0323). In multivariate analysis, only the stage remained as the independent predictor of survival. CONCLUSIONS: Decreased p21Cip1 expression is related to several indicators of aggressiveness in ovarian adenocarcinomas and seems to be differentially regulated in LMP tumors and adenocarcinomas. On the contrary, deregulation of p21Cip1 expression does not seem to participate in the pathogenesis of LMP tumors. Furthermore, although p21Cip1 alone or combined with p53 is of prognostic significance in lower grade adenocarcinomas, it does not appear to add to the information gained from traditional prognosticators.  相似文献   

10.

Background  

Cyclins regulate the cell cycle in association with cyclin dependent kinases (CDKs). CDKs are under inhibitory control of cyclin dependent kinase inhibitors (CDKIs).  相似文献   

11.
To investigate the potential functional cooperation between p27Kip1 and p130 in vivo, we generated mice deficient for both p27Kip1 and p130. In p27Kip1-/-; p130-/- mice, the cellularity of the spleens but not the thymi is significantly increased compared with that of their p27Kip1-/- counterparts, affecting the lymphoid, erythroid, and myeloid compartments. In vivo cell proliferation is significantly augmented in the B and T cells, monocytes, macrophages, and erythroid progenitors in the spleens of p27Kip1-/-; p130-/- animals. Immunoprecipitation and immunodepletion studies indicate that p130 can compensate for the absence of p27Kip1 in binding to and repressing CDK2 and is the predominant CDK-inhibitor associated with the inactive CDK2 in the p27Kip1-/- splenocytes. The finding that the p27Kip1-/-; p130-/- splenic B cells are hypersensitive to mitogenic stimulations in vitro lends support to the concept that the hyperproliferation of splenocytes is not a result of the influence of their microenvironment. In summary, our findings provide genetic and molecular evidence to show that p130 is a bona fide cyclin-dependent kinase inhibitor and cooperates with p27Kip1 to regulate hematopoietic cell proliferation in vivo.  相似文献   

12.
Endothelial cell proliferation is a critical step in angiogenesis and requires a coordinated response to soluble growth factors and the extracellular matrix. As focal adhesion kinase (FAK) integrates signals from both adhesion events and growth factor stimulation, we investigated its role in endothelial cell proliferation. Expression of a dominant-negative FAK protein, FAK-related nonkinase (FRNK), impaired phosphorylation of FAK and blocked DNA synthesis in response to multiple angiogenic stimuli. These results coincided with elevated cyclin-dependent kinase inhibitors (CDKIs) p21/Cip and p27/Kip, as a consequence of impaired degradation. FRNK inhibited the expression of Skp2, an F-box protein that targets CDKIs, by inhibiting mitogen-induced mRNA. The FAK-regulated degradation of p27/Kip was Skp2 dependent, while levels of p21/Cip were regulated independent of Skp2. Skp2 is required for endothelial cell proliferation as a consequence of degrading p27. Finally, knockdown of both p21 and p27 in FRNK-expressing cells completely restored mitogen-induced endothelial cell proliferation. These data demonstrate a critical role for FAK in the regulation of CDKIs through two independent mechanisms: Skp2 dependent and Skp2 independent. They also provide important insights into the requirement of focal adhesion kinase for normal vascular development and reveal novel regulatory control points for angiogenesis.  相似文献   

13.
14.
The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 contributes to the timing of cell cycle withdrawal during development and, consequently, in organogenesis. Within the retina, this effector protein is up-regulated during the birth of neuronal and glial cells [Dev. Biol. (2000) 299]. However, its expression within the retinal pigment epithelium (RPE), a supporting cell layer that is essential for neural retina development and function, has not previously been reported. We show that p27Kip1 protein expression in the RPE occurs in two phases: an up-regulation during mid-to late embryonic stages and a down-regulation during the subsequent postnatal period. In the early phase of up-regulation, an inverse relationship is seen between expression of p27Kip1 and PCNA, an indicator of cycling cells. During both up-and down-regulation, the change in spatial pattern of expression proceeds in a central to peripheral manner, with p27Kip1 up-regulation paralleling retinal maturation. These data suggest that this cell cycle regulator may be an important factor controlling the timing of RPE cell cycle withdrawal.  相似文献   

15.
16.
We are employing recent advances in the understanding of the cell cycle to study the inverse relationship between proliferation and neuronal differentiation. Nerve growth factor and aphidicolin, an inhibitor of DNA polymerases, synergistically induce neuronal differentiation of SH-SY5Y neuroblastoma cells and the expression of p21WAF1, an inhibitor of cyclin-dependent kinases. The differentiated cells continue to express p21WAF1, even after removal of aphidicolin from the culture medium. The p21WAF1 protein coimmunoprecipitates with cyclin E and inhibits cyclin E-associated protein kinase activity. Each of three antisense oligonucleotides complementary to p21WAF1 mRNA partially blocks expression of p21WAF1 and promotes programmed cell death. These data indicate that p21WAF1 expression is required for survival of these differentiating neuroblastoma cells. Thus, the problem of neuronal differentiation can now be understood in the context of negative regulators of the cell cycle.  相似文献   

17.
Elevated levels of the cyclin-dependent kinase (CDK) inhibitor p27 block the cell in G(0)/G(1) until mitogenic signals activate G(1) cyclins and initiate proliferation. Post-translational regulation of p27 by different phosphorylation events is critical in allowing cells to proceed through the cell cycle. We now demonstrate that the arginine-directed kinase, Mirk/dyrk1B, is maximally active in G(0) in NIH3T3 cells, when it stabilizes p27 by phosphorylating it at Ser-10. The phospho-mimetic mutant p27-S10D was more stable, and the non-phosphorylatable mutant p27-S10A was less stable than wild-type when expressed in G(0)-arrested cells. Following phosphorylation by Mirk, p27 remains a functional CDK inhibitor, capable of binding to CDK2. Mirk did not induce the translocation of p27 from the nucleus in G(0), but instead co-localized with nuclear p27. Depletion of Mirk by RNA interference decreased the phosphorylation of p27 at Ser-10 and the stability of endogenous p27. RNA(i) to Mirk increased cell entry from G(0) into G(1) as shown by increased expression of proliferating cell nuclear antigen and decreased expression of p27. These data suggest a model in which Mirk increases the amount of nuclear p27 by stabilizing it during G(0) when Mirk is most abundant. Mitogen stimulation then causes cells to enter G(1), reduces Mirk levels (Deng, X., Ewton, D., Pawlikowski, B., Maimone, M., and Friedman, E. (2003) J. Biol. Chem. 278, 41347-41354), and initiates the translocation of p27 to the cytoplasm. In addition, depletion of Mirk by RNA(i) in postmitotic C2C12 myoblasts decreased protein but not mRNA levels of p27, suggesting that stabilization of p27 by Mirk also occurs during differentiation.  相似文献   

18.
Distinct protein kinase C (PKC) isoforms differentially regulate cellular proliferation in rat microvascular endothelial cells (EC). Overexpression of PKCalpha has little effect on proliferation, whereas PKCdelta slows endothelial cell proliferation and induces S-phase arrest. Analyses were performed on EC overexpressing PKCalpha (PKCalphaEC) or PKCdelta (PKCdeltaEC) to determine the role of specific cell cycle regulatory proteins in the PKCdelta-induced cell cycle arrest. Serum-induced stimulation of cyclins D1, E, and A-associated kinase activity was delayed by 12 h in the PKCdeltaEC line in association with S-phase arrest. However, the protein levels for cyclins D1, E, and A were similar. Nuclear accumulation of cyclin D1 protein in response to serum was also delayed in PKCdeltaEC. In the PKCdeltaEC line, serum induced p27(Kip1) but not p16(Ink4a) or p21(Cip1). Serum did not affect p27(Kip1) levels in the control vascular endothelial cell line. Immunoprecipitation-Western blotting analysis of p27(Kip1) showed serum stimulation of the vascular endothelial cell line resulted in increased amounts of cyclin D1 bound to p27(Kip1). In the PKCdeltaEC line, serum did not increase the amount of cyclin D1 bound to p27(Kip1). Transfection of full-length p27(Kip1) antisense into the PCKdeltaEC line reversed the S-phase arrest and resulted in normal cell cycle progression, suggesting a critical role for p27(Kip1) in the PKCdelta-mediated S-phase arrest.  相似文献   

19.
Using theconditionally immortalized human cell line tsFHI, we have investigatedthe role of cyclin-dependent kinase inhibitors (CKIs) in intestinalepithelial cell differentiation. Expression of cyclins,cyclin-dependent kinases (Cdk), and CKIs was examined under conditionspromoting growth, growth arrest, or expression of differentiatedtraits. Formation of complexes among cell cycle regulatory proteins andtheir kinase activities were also investigated. The tsFHI cells expressthree CKIs: p16, p21, and p27. With differentiation, p21 and p27 werestrongly induced, but with different kinetics: the p21 increase wasrapid but transient and the p27 increase was delayed but sustained. Ourresults suggest that the function of p16 is primarily to inhibit cyclinD-associated kinases, making tsFHI cells dependent on cyclin E-Cdk2 forpRb phosphorylation and G1/Sprogression. Furthermore, they indicate that p21 is the main CKIinvolved in irreversible growth arrest during the early stages of celldifferentiation in association with D-type cyclins, cyclin E, and Cdk2,whereas p27 may induce or stabilize expression of differentiated traitsacting independently of cyclin-Cdk function.

  相似文献   

20.
A PstI polymorphism in the 3 flanking region of the p21CiP1/Waf1 cyclin-dependent kinase inhibitor gene is described. DNA sequencing analysis identified a CT base substitution in the 3 flanking region of the gene. This substitution leads to the destruction of a PstI site and results in a biallelic DNA polymorphism. This restriction fragment length polymorphism (RFLP) provides the first known genetic marker for this cell cycle regulatory gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号