首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Singh M  Sharma H  Singh N 《Mitochondrion》2007,7(6):367-373
Cervical cancer is the most common cancer amongst females in India and is associated with high risk HPVs, reactive oxygen species (ROS), and excessive inflammation in most cases. ROS in turn affects the expression of pro- and anti-apoptotic proteins. The objective of the present study was to elucidate the effect of hydrogen peroxide (H(2)O(2)) on apoptotic signaling molecules in vitro. HeLa cell line expresses the Human papilloma virus - 18, E6 oncoprotein which causes the ubiquitin mediated degradation of p53 protein and is thus p53 deficient. p53 is known to act as a cellular stress sensor and triggers apoptosis. p73, a member of the p53 family also induces apoptosis in response to DNA damaging agents but unlike p53, it is infrequently mutated in human tumors. We demonstrate here, that in HeLa cells, apoptosis is triggered by H(2)O(2) via the mitochondrial pathway involving upregulation of p73, and its downstream target Bax. This was accompanied by upregulation of ERK, JNK, c-Myc, Hsp-70 and down regulation of anti-apoptotic Bcl-XL, release of cytochrome c from mitochondria and activation of caspases-9 and -3.  相似文献   

2.
Skulachev VP 《IUBMB life》2005,57(4-5):305-310
Membrane-penetrating triphenyl alkyl phosphonium cations have been suggested for many years in our group as having the ability to measure mitochondrial potential were recently used by Murphy as vehicles to specifically target CoQ to mitochondria. As was shown in our group, the phosphonium derivative of CoQ (MitoQ) easily penetrates a planar bilayer phospholipid membrane as a cation, generating 60 mV electric potential (Deltapsi) per a 10-fold MitoQ gradient. This means that MitoQ should be unequally distributed across the inner mitochondrial membrane, the intramitochondrial [MitoQ] = extramitochondrial [MitoQ] x 10(3) at 180 mV Deltapsi. In line with such a calculation, Murphy and his colleagues reported that antioxidant efficiency of MitoQ added to mitochondria or cells appears to be very much higher than of CoQ. It was found that H2O2-induced apoptosis (Murphy) and the H2O2-mediated bystander killing of the cultivated cells (our group) are completely arrested by pretreatement of the cells with 10(-10) - 10(-8) M MitoQ. These effects indicate that MitoQ and similar compounds may be promising in treatment of heart attack, stroke and other diseases accompanied by massive apoptosis in the injured tissue. The very fact that: (i) MitoQ is not only accumulated by mitochondria but also can be regenerated in its reduced form by mitochondrial respiratory chain, (ii) it is the mitochondrial interior that produces a large portion of reactive oxygen species (ROS) in our body, and (iii) the most sensitive ROS targets are localized in the mitochondrial matrix suggest the MitoQ-like compounds are promising tools of molecular therapy of aerobic cells. In line with this suggestion, we found that addition of MitoQ strongly improves structural and biochemical parameters of cultivated cells. As to cationic tetrapeptides, recently advertised as mitochondrially-targeted Deltapsi-independent antioxidants, their effect is most probably mediated by an opioid activity inherent in some of these substances.  相似文献   

3.
Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor   总被引:4,自引:0,他引:4  
The aim of this study was to elucidate cellular mechanisms involved in ceramide-induced apoptosis and its attenuation by hepatocyte growth factor (HGF). Human retinal pigmented epithelial cells (RPE) incubated with C2 ceramide accumulated reactive oxygen species (ROS) in mitochondria and underwent apoptosis in a dose-dependent manner. Ceramide-treated cells showed increased caspase-3 activation and an increase in mitochondrial membrane permeability transition (MPT). Low doses of H2O2 (100 microM) alone induced negligible apoptosis; however, ceramide-induced apoptosis was significantly enhanced by co-incubation with H2O2 (100 microM). Furthermore, ceramide treatment significantly decreased catalase enzymatic activity and protein expression. HGF pretreatment (20 ng/ml) significantly inhibited ceramide-induced apoptosis and reduced the accumulation of ROS, the activation of caspase-3, and the increase in MPT and prevented the reduction in catalase activity and expression. Together, the data suggest that ceramide induces apoptosis in RPE cells by increasing ROS production, MPT, and caspase-3 activation. The ceramide effect is potentiated by H2O2 and associated with a reduction in catalase activity, suggesting that catalase plays a central role in regulating this apoptotic response. The ability of HGF to attenuate these effects demonstrates its effectiveness as an antioxidant growth factor.  相似文献   

4.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:4,自引:0,他引:4  
为探讨Smac/DIABLO在过氧化氢(H2O2)所致C2C12肌原细胞凋亡中的作用,采用Hoechst 33258染色,观察H2O2 (0.5 mmol/L)处理C2C12肌原细胞不同时间后,细胞核形态学改变并计算凋亡核百分率,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带,利用细胞成分分离后蛋白质印迹分析H2O2是否导致Smac/DIABLO从线粒体释放,采用Caspase检测试剂盒及蛋白质印迹分析Caspase-3和Caspase-9的活化,转染Smac/DIABLO基因,观察Smac/DIABLO过表达对H2O2所致的C2C12肌原细胞凋亡的影响.结果表明:H2O2处理1 h后,Smac/DIABLO从C2C12肌原细胞线粒体释放入胞浆,2 h更明显;H2O2处理4 h后,Caspase-3和Caspase-9活化,12 h达高峰;H2O2处理24 h后,C2C12肌原细胞显示特征性的凋亡形态改变,凋亡核百分率明显升高,DNA电泳出现明显“梯状”条带.与单纯过氧化氢损伤组相比,Smac/DIABLO高表达的C2C12肌原细胞经过氧化氢损伤组的Caspase-3和Caspase-9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显.结果表明,H2O2可导致Smac/DIABLO从C2C12肌原细胞线粒体释放,促进Caspase-9和Caspase-3的活化而促进细胞凋亡的发生.  相似文献   

5.
Hong H  Liu GQ 《Life sciences》2004,74(24):2959-2973
The present study investigated the protective actions of the antioxidant scutellarin against the cytotoxicity produced by exposure to H2O2 in PC12 cells. This was done by assaying for MTT (3,(4,5-dimethylthiazole-2-yl)2,5-diphenyl-tetrazolium bromide) reduction and lactate dehydrogenase (LDH) release. Reactive oxygen species (ROS) and Ca2+ in cells were evaluated by fluorescent microplate reader using DCFH and Fura 2-AM, respectively, as probes. Lipid peroxidation was quantified using thiobarbituric acid-reactive substances (TBARS). Mitochondrial membrane potential (MMP) was assessed by the retention of rhodamine123 (Rh123), a specific fluorescent cationic dye that is readily sequestered by active mitochondria, depending on their transmembrane potential. The DNA content and percentage of apoptosis were monitored with flow cytometry. Vitamin E, a potent antioxidant, was employed as a comparative agent. Preincubation of PC12 cells with scutellarin prevented cytotoxicity induced by H2O2. Intracellular accumulation of ROS, Ca2+ and products of lipid peroxidation, resulting from H2O2 were significantly reduced by scutellarin. Incubation of cells with H2O2 caused a marked decrease in MMP, which was significantly inhibited by scutellarin. PC12 cells treated with H2O2 underwent apoptotic death as determined by flow cytometric assay. The percentage of this H2O2-induced apoptosis in the cells was decreased in the presence of different concentrations of scutellarin. Scutellarin exhibited significantly higher potency compared to the antioxidant vitamin E. The present findings showed that scutellarin attenuated H2O2-induced cytotoxicity, intracellular accumulation of ROS and Ca2+, lipid peroxidation, and loss of MMP and DNA, which may represent the cellular mechanisms for its neuroprotective action.  相似文献   

6.
Kim DS  Jeon SE  Jeong YM  Kim SY  Kwon SB  Park KC 《FEBS letters》2006,580(5):1439-1446
Recently, we reported that a combination of indole-3-acetic acid (IAA) and horseradish peroxidase (HRP) induces apoptosis in G361 human melanoma cells. However, the apoptotic mechanism involved has been poorly studied. It is known that when IAA is oxidized by HRP, free radicals are produced, and since oxidative stress can induce apoptosis, we investigated whether reactive oxygen species (ROS) are involved in IAA/HRP-induced apoptosis. Our results show that IAA/HRP-induced free radical production is inhibited by catalase, but not by superoxide dismutase or sodium formate. Furthermore, catalase was found to prevent IAA/HRP-induced apoptotic cell death, indicating that IAA/HRP-produced hydrogen peroxide (H2O2) may be involved in the apoptotic process. Moreover, the antiapoptotic effect of catalase is potentiated by NADPH, which is known to protect catalase. On further investigating the IAA/HRP-mediated apoptotic pathway, we found that the IAA/HRP reaction leads to caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, which was also blocked by catalase. Additionally, we found that IAA/HRP produces H2O2 and induces peroxiredoxin (Prx) sulfonylation. Consequently, our results suggest that H2O2 plays a major role in IAA/HRP-induced apoptosis.  相似文献   

7.
TNFα generates reactive oxygen species (ROS) at the cell surface that induce cell death, but how ROS communicate to mitochondria and their specific apoptotic action(s) are both undefined. ROS oxidize phospholipids to hydroperoxides that are friable and fragment adjacent to the (hydro)peroxide function, forming truncated phospholipids, such as azelaoyl phosphatidylcholine (Az-PC). Az-PC is relatively soluble, and exogenous Az-PC rapidly enters cells to damage mitochondrial integrity and initiate intrinsic apoptosis. We determined whether this toxic phospholipid is formed within cells during TNFα stimulation in sufficient quantities to induce apoptosis and if they are essential in TNFα-induced cytotoxicity. We found that TNFα induced ROS formation and phospholipid peroxidation in Jurkat cells, and either chemical interference with NADPH oxidase activity or siRNA suppression of the NADPH oxidase-4 subunit blocked ROS accumulation and phospholipid peroxidation. Mass spectrometry showed that phospholipid peroxides and then Az-PC increased after TNFα exposure, whereas ROS inhibition abolished Az-PC accumulation and TNFα-induced cell death. Glutathione peroxidase-4 (GPx4), which specifically metabolizes lipid hydroperoxides, fell in TNFα-stimulated cells prior to death. Ectopic GPx4 overcame this, reduced peroxidized phospholipid accumulation, blocked Az-PC accumulation, and prevented death. Conversely, GPx4 siRNA knockdown enhanced phospholipid peroxidation, increasing TNFα-stimulated Az-PC formation and apoptosis. Truncated phospholipids were essential elements of TNFα-induced apoptosis because overexpression of PAFAH2 (a phospholipase A(2) that selectively hydrolyzes truncated phospholipids) blocked TNFα-induced Az-PC accumulation without affecting phospholipid peroxidation. PAFAH2 also abolished apoptosis. Thus, phospholipid oxidation and truncation to apoptotic phospholipids comprise an essential element connecting TNFα receptor signaling to mitochondrial damage and apoptotic death.  相似文献   

8.
Antimycin A (AMA), an inhibitor of electron transport in mitochondria, has been used as a reactive oxygen species (ROS) generator in biological systems. Here, we investigated the in vitro effect of AMA on apoptosis in HeLa cells. AMA inhibited the growth of HeLa cells with an IC(50) of about 50 microM. AMA efficiently induced apoptosis, as evidenced by flow cytometric detection of sub-G1 DNA content, annexin V binding assay, and DAPI staining. This apoptotic process was accompanied by the loss of mitochondrial membrane potential (DeltaPsi(m)), Bcl-2 down-regulation, Bax up-regulation, and PARP degradation. All caspase inhibitors used in this experiment, especially pan-caspase inhibitor (Z-VAD), could rescue some HeLa cells from AMA-induced cell death. When we examined the changes of the ROS, H(2)O(2) or O(2) (.-), in AMA-treated cells, H(2)O(2) and O(2) (.-) were markedly increased. In addition, we detected the depletion of GSH content in AMA-treated cells. Pan-caspase inhibitor showing the efficient anti-apoptotic effect significantly reduced GSH depletion by AMA. Superoxide dismutase (SOD) and catalase did not reduce intracellular ROS, but these could strongly rescue the cells from apoptosis. However, these anti-apoptotic effects were not accompanied by the recovery of GSH depletion. Interestingly, catalase significantly decreased the CMF negative (GSH depletion) and propidium iodide (PI) positive cells, indicating that catalase strongly maintained the integrity of the cell membrane in CMF negative cells. Taken together, these results demonstrate that AMA potently generates ROS, induces the depletion of GSH content in HeLa cells, and strongly inhibits the growth of HeLa cells throughout apoptosis.  相似文献   

9.
To define the mechanism of arsenite-induced tumor promotion, we examined the role of reactive oxygen species (ROS) in the signaling pathways of cells exposed to arsenite. Arsenite treatment resulted in the persistent activation of p70(s6k) and extracellular signal-regulated kinase 1/2 (ERK1/2) which was accompanied by an increase in intracellular ROS production. The predominant produced appeared to be H(2)O(2), because the arsenite-induced increase in dichlorofluorescein (DCF) fluorescence was completely abolished by pretreatment with catalase but not with heat-inactivated catalase. Elimination of H(2)O(2) by catalase or N-acetyl-L-cysteine inhibited the arsenite-induced activation of p70(s6k) and ERK1/2, indicating the possible role of H(2)O(2) in the arsenite activation of the p70(s6k) and the ERK1/2 signaling pathways. A specific inhibitor of p70(s6k), rapamycin, and calcium chelators significantly blocked the activation of p70(s6k) induced by arsenite. While the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 completely abrogated arsenite activation of p70(s6k), ERK1/2 activation by arsenite was not affected by these inhibitors, indicating that H(2)O(2) might act as an upstream molecule of PI3K as well as ERK1/2. Consistent with these results, none of the inhibitors impaired H(2)O(2) production by arsenite. DNA binding activity of AP-1, downstream of ERK1/2, was also inhibited by catalase, N-acetyl-L-cysteine, and the MEK inhibitor PD98059, which significantly blocked arsenite activation of ERK1/2. Taken together, these studies provide insight into mechanisms of arsenite-induced tumor promotion and suggest that H(2)O(2) plays a critical role in tumor promotion by arsenite through activation of the ERK1/2 and p70(s6k) signaling pathways.  相似文献   

10.
Mitochondrial Redox Signaling during Apoptosis   总被引:9,自引:0,他引:9  
The regulatory role of cellular redox state during apoptosis is still controversial. Early redoxsignaling can transduce divergent upstream signals to mitochondria and initiate apoptosis. Onthe other hand, release of mitochondrial cytochrome c triggers generation of reactive oxygenspecies (ROS) and renders apoptotic cells much more oxidized. Although the sequential caspaseactivation does not have apparent redox-sensitive components, redox signaling provides aseparate pathway that is parallel with the caspase cascade. The function of theapoptosis-associated redox change is uncertain. It could provide positive feedback mechanisms, such asactivating mitochondrial permeability transition and apoptosis signaling kinase (ASK-1). Sinceapoptotic cells are designated to be quickly eliminated, the dramatic cellular oxidation couldbe involved in the final degradation of apoptotic bodies and even the termination of theproteolytic activity after phagocytosis.  相似文献   

11.
Park WH  Han YW  Kim SH  Kim SZ 《Mutation research》2007,619(1-2):81-92
We investigated the involvement of ROS such as H2O2 and O2*-, and GSH in As4.1 cell death induced by pyrogallol. The intracellular H2O2 levels were decreased or increased depending on the concentration and incubation time of pyrogallol. The levels of O2*- were significantly increased. Pyrogallol reduced the intracellular GSH content. And ROS scavengers, Tempol, Tiron, Trimetazidine and NAC could not significantly down-regulate the production of H2O2 and O2*-. However, these ROS scavengers slightly inhibited apoptosis. Interestingly, Tempol showing the recovery of GSH depletion induced by pyrogallol significantly decreased apoptosis without the significant reduction of intracellular O2*- levels. SOD and catalase did not change the level of H2O2 but decreased the level of O2*-. The inhibition of GSH depletion by these was accompanied with the decrease of apoptosis, as evidenced by sub-G1 DNA content, annexin V staining, mitochondria membrane potential (DeltaPsi(m)) and Western data. In addition, ROS scavengers and SOD did not alter a G2 phase accumulation of the cell cycle induced by pyrogallol. However, catalase changed the cell cycle distributions of pyrogallol-treated cells to those of pyrogallol-untreated cells. In summary, we have demonstrated that pyrogallol potently generates ROS, especially O2*-, in As4.1 JG cells, and Tempol, SOD and catalase could rescue to a lesser or greater extent cells from pyrogallol-induced apoptosis through the up-regulation of intracellular GSH content.  相似文献   

12.
Mitochondrial oxidative burst involved in apoptotic response in oats   总被引:10,自引:0,他引:10  
Apoptotic cell response in oats is induced by victorin, a host-selective toxin secreted by Cochliobolus victoriae and thought to exert toxicity by inhibiting mitochondrial glycine decarboxylase (GDC) in Pc-2/Vb oats. We examined the role of mitochondria, especially the organelle-derived production of reactive oxygen species (ROS), in the induction of apoptotic cell death. Cytofluorimetric analysis showed that victorin caused mitochondrial deltaPsim breakdown and mitochondrial oxidative burst. Ultrastructural analysis using a cytochemical assay based on the reaction of H2O2 with CeCl3 detected H2O2 eruption at permeability transition pore-like sites on the mitochondrial membrane in oat cells treated with victorin. ROS generation preceded the apoptotic cell responses seen in chromatin condensation and DNA laddering. Both aminoacetonitrile (a specific GDC inhibitor) and antimycin A (a mitochondrial complex III inhibitor) also induced mitochondrial H2O2 eruption, and led to the apoptotic response in oat cells. ROS scavengers such as N-acetyl-l-cysteine and catalase suppressed the mitochondrial oxidative burst and delayed chromatin condensation and DNA laddering in the victorin- or antimycin A-treated leaves. These findings indicate possible involvement of mitochondria, especially mitochondrial-derived ROS generation, as an important regulator in controlling apoptotic cell death in oats.  相似文献   

13.
Tumor necrosis factor-alpha (TNF-alpha) induces reactive oxygen species (ROS) that serve as second messengers for intracellular signaling. Currently, precise roles of individual ROS in the actions of TNF-alpha remain to be elucidated. In this report, we investigated the roles of superoxide anion (O-(2)), hydrogen peroxide (H(2)O(2)), and peroxynitrite (ONOO(-)) in TNF-alpha-triggered apoptosis of mesangial cells. Mesangial cells stimulated by TNF-alpha produced O-(2) and underwent apoptosis. The apoptosis was inhibited by transfection with manganese superoxide dismutase or treatment with a pharmacological scavenger of O-(2), Tiron. In contrast, although exogenous H(2)O(2) induced apoptosis, TNF-alpha-triggered apoptosis was not affected either by transfection with catalase cDNA or by treatment with catalase protein or glutathione ethyl ester. Similarly, although ONOO(-) precursor SIN-1 induced apoptosis, treatment with a scavenger of ONOO(-), uric acid, or an inhibitor of nitric oxide synthesis, N(G)-nitro-L-argininemethyl ester hydrochloride, did not affect the TNF-alpha-triggered apoptosis. Like TNF-alpha-induced apoptosis, treatment with a O-(2)-releasing agent, pyrogallol, induced typical apoptosis even in the concurrent presence of scavengers for H(2)O(2) and ONOO(-). These results suggested that, in mesangial cells, TNF-alpha induces apoptosis through selective ROS. O-(2), but not H(2)O(2) or ONOO(-), was identified as the crucial mediator for the TNF-alpha-initiated, apoptotic pathway.  相似文献   

14.
Prostaglandin (PG) F(2)a is known to initiate luteal cell apoptosis in the bovine corpus luteum (CL) via its specific receptor (FP) on the luteal membrane by inducing intracellular Ca(2+) mobilization and the activation of PKC. In order to identify the signaling components involved in cell apoptosis, mRNA levels and activities of antioxidative enzymes were analyzed using bovine CL at different stages of the estrous cycle. Northern blot analysis revealed that the levels of two isozymes of superoxide dismutase (SOD), the Mn and Cu/Zn types, and catalase are highly enriched in the middle estrous phase, whereas glutathione peroxidase (GPx) levels gradually decrease as the estrous cycle progresses. The incubation of bovine luteal cells with H(2)O(2) and mercaptosuccinate (MS), a specific inhibitor of GPx, resulted in an increase in chromatin DNA condensation and apoptotic DNA fragmentation. Analyses of the enzymatic activities of GPx and catalase support the RNA data, indicating that H(2)O(2) produced due to the lack of GPx is a potent inducer of luteal cell apoptosis.  相似文献   

15.
H2O2 intensifies CN−-induced apoptosis in pea leaves   总被引:1,自引:0,他引:1  
H2O2 intensifies CN(-)-induced apoptosis in stoma guard cells and to lesser degree in basic epidermal cells in peels of the lower epidermis isolated from pea leaves. The maximum effect of H2O2 on guard cells was observed at 10(-4) M. By switching on non-cyclic electron transfer in chloroplasts menadione and methyl viologen intensified H2O2 generation in the light, but prevented the CN--induced apoptosis in guard cells. The light stimulation of CN- effect on guard cell apoptosis cannot be caused by disturbance of the ribulose-1,5-bisphosphate carboxylase function and associated OH* generation in chloroplasts with participation of free transition metals in the Fenton or Haber-Weiss type reactions as well as with participation of the FeS clusters of the electron acceptor side of Photosystem I. Menadione and methyl viologen did not suppress the CN(-)-induced apoptosis in epidermal cells that, unlike guard cells, contain mitochondria only, but not chloroplasts. Quinacrine and diphenylene iodonium, inhibitors of NAD(P)H oxidase of cell plasma membrane, had no effect on the respiration and photosynthetic O2 evolution by leaf slices, but prevented the CN(-)-induced guard cell death. The data suggest that NAD(P)H oxidase of guard cell plasma membrane is a source of reactive oxygen species (ROS) needed for execution of CN(-)-induced programmed cell death. Chloroplasts and mitochondria were inefficient as ROS sources in the programmed death of guard cells. When ROS generation is insufficient, exogenous H2O2 exhibits a stimulating effect on programmed cell death. H2O2 decreased the inhibitory effects of DCMU and DNP-INT on the CN(-)-induced apoptosis of guard cells. Quinacrine, DCMU, and DNP-INT had no effect on CN(-)-induced death of epidermal cells.  相似文献   

16.
In this study we characterized the phosphorylation of tyrosine 311 and its role in the apoptotic function of PKCdelta in glioma cells. We found that c-Abl phosphorylated PKCdelta on tyrosine 311 in response to H2O2 and that this phosphorylation contributed to the apoptotic effect of H2O2. In contrast, Src, Lyn, and Yes were not involved in the phosphorylation of tyrosine 311 by H2O2. A phosphomimetic PKCdelta mutant, in which tyrosine 311 was mutated to glutamic acid (PKCdeltaY311E), induced a large degree of cell apoptosis. Overexpression of the PKCdeltaY311E mutant induced the phosphorylation of p38 and inhibition of p38 abolished the apoptotic effect of the PKCdelta mutant. These results suggest an important role of tyrosine 311 in the apoptotic function of PKCdelta and implicate c-Abl as the kinase that phosphorylates this tyrosine.  相似文献   

17.
Hepatocytes from cirrhotic murine livers exhibit increased basal ROS activity and resistance to TGFbeta-induced apoptosis, yet when ROS levels are decreased by antioxidant pretreatment, these cells recover susceptibility to apoptotic stimuli. To further study these redox events, hepatocytes from cirrhotic murine livers were pretreated with various antioxidants prior to TGFbeta treatment and the ROS activity, apoptotic response, and mitochondrial ROS generation were assessed. In addition, normal hepatocytes were treated with low-dose H(2)O(2) and ROS and apoptotic responses determined. Treatment of cirrhotic hepatocytes with various antioxidants decreased basal ROS and rendered them susceptible to apoptosis. Examination of normal hepatocytes by confocal microscopy demonstrated colocalization of ROS activity and respiring mitochondria. Basal assessment of cirrhotic hepatocytes showed nonfocal ROS activity that was abolished by antioxidants. After pretreatment with an adenovirus expressing MnSOD, basal cirrhotic hepatocyte ROS were decreased and TGFbeta-induced colocalization of ROS and mitochondrial respiration was present. Treatment of normal hepatocytes with H(2)O(2) resulted in a sustained increase in ROS and resistance to TGFbeta apoptosis that was reversed when these cells were pretreated with an antioxidant. In conclusion, cirrhotic hepatocytes have a nonfocal distribution of ROS. However, normal and cirrhotic hepatocytes exhibit mitochondrial localization of ROS that is necessary for apoptosis.  相似文献   

18.
Mitochondria can be a source of reactive oxygen species (ROS) and a target of oxidative damage during oxidative stress. In this connection, the effect of photodynamic treatment (PDT) with Mitotracker Red (MR) as a mitochondria-targeted photosensitizer has been studied in HeLa cells. It is shown that MR produces both singlet oxygen and superoxide anion upon photoactivation and causes photoinactivation of gramicidin channels in a model system (planar lipid bilayer). Mitochondria-targeted antioxidant (MitoQ) inhibits this effect. In living cells, MR-mediated PDT initiates a delayed ("dark") accumulation of ROS, which is accelerated by inhibitors of the respiratory chain (piericidin, rotenone and myxothiazol) and inhibited by MitoQ and diphenyleneiodonium (an inhibitor of flavin enzymes), indicating that flavin of Complex I is involved in the ROS production. PDT causes necrosis that is prevented by MitoQ. Treatment of the cell with hydrogen peroxide causes accumulation of ROS, and the effects of inhibitors and MitoQ are similar to that described for the PDT model. Apoptosis caused by H2O2 is augmented by the inhibitors of respiration and suppressed by MitoQ. It is concluded that the initial segments of the respiratory chain can be an important source of ROS, which are targeted to mitochondria, determining the fate of the cell subjected to oxidative stress.  相似文献   

19.
2,4-Dinitrophenol (DNP) is an uncoupler of oxidative phosphorylation in mitochondria. Here, we investigated the in vitro effect of DNP on apoptosis and the involvement of reactive oxygen species (ROS) in As4.1 juxtaglomerular cell death. Dose- and time-dependent induction of apoptosis was evidenced by flow cytometric detection of sub-G1 DNA content and annexin V binding assay. The intracellular H(2)O(2) and O(2)(-) levels were markedly increased in DNP-treated cells. However, the reduction of intracellular H(2)O(2) level by Tiron and catalase did not prevent apoptosis induced by DNP. Moreover, DNP rapidly reduced intracellular GSH content in As4.1 cells. Taken together, apoptosis in DNP-treated As4.1 cells is correlated with the rapid change of intracellular GSH levels rather than ROS levels.  相似文献   

20.
Various proapoptotic stimuli increase the production of superoxide and H(2)O(2) by mitochondria. Whereas superoxide impairs mitochondrial function and is removed by Mn(2+)-dependent superoxide dismutase, the role and metabolism of mitochondrial H(2)O(2) during apoptosis have remained unclear. The effects on apoptotic signaling of depletion of peroxiredoxin (Prx) III, a mitochondrion-specific H(2)O(2)-scavenging enzyme, have now been investigated by RNA interference in HeLa cells. Depletion of Prx III resulted in increased intracellular levels of H(2)O(2) and sensitized cells to induction of apoptosis by staurosporine or TNF-alpha. The rates of mitochondrial membrane potential collapse, cytochrome c release, and caspase activation were increased in Prx III-depleted cells, and these effects were reversed by ectopic expression of Prx III or mitochondrion-targeted catalase. Depletion of Prx III also exacerbated damage to mitochondrial macromolecules induced by the proapoptotic stimuli. Our results suggest that Prx III is a critical regulator of the abundance of mitochondrial H(2)O(2), which itself promotes apoptosis in cooperation with other mediators of apoptotic signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号