首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
For randomized clinical trials where the endpoint of interest is a time-to-event subject to censoring, estimating the treatment effect has mostly focused on the hazard ratio from the Cox proportional hazards model. Since the model’s proportional hazards assumption is not always satisfied, a useful alternative, the so-called additive hazards model, may instead be used to estimate a treatment effect on the difference of hazard functions. Still, the hazards difference may be difficult to grasp intuitively, particularly in a clinical setting of, e.g., patient counseling, or resource planning. In this paper, we study the quantiles of a covariate’s conditional survival function in the additive hazards model. Specifically, we estimate the residual time quantiles, i.e., the quantiles of survival times remaining at a given time t, conditional on the survival times greater than t, for a specific covariate in the additive hazards model. We use the estimates to translate the hazards difference into the difference in residual time quantiles, which allows a more direct clinical interpretation. We determine the asymptotic properties, assess the performance via Monte-Carlo simulations, and demonstrate the use of residual time quantiles in two real randomized clinical trials.  相似文献   

2.
Proportional hazards tests and diagnostics based on weighted residuals   总被引:42,自引:0,他引:42  
Nonproportional hazards can often be expressed by extendingthe Cox model to include time varying coefficients; e.g., fora single covariate, the hazard function for subject i is modelledas exp {β(t)Zi(t)}. A common example is a treatment effectthat decreases with time. We show that the function βi(t)can be directly visualized by smoothing an appropriate residualplot. Also, many tests of proportional hazards, including thoseof Cox (1972), Gill & Schumacher (1987), Harrell (1986),Lin (1991), Moreau, O'Quigley & Mesbah (1985), Nagelkerke,Oosting & Hart (1984), O'Quigley & Pessione (1989),Schoenfeld (1980) and Wei (1984) are related to time-weightedscore tests of the proportional hazards hypothesis, and canbe visualized as a weighted least-squares line fitted to theresidual plot.  相似文献   

3.
The Cox hazards model (Cox, 1972, Journal of the Royal Statistical Society, Series B34, 187-220) for survival data is routinely used in many applied fields, sometimes, however, with too little emphasis on the fit of the model. A useful alternative to the Cox model is the Aalen additive hazards model (Aalen, 1980, in Lecture Notes in Statistics-2, 1-25) that can easily accommodate time changing covariate effects. It is of interest to decide which of the two models that are most appropriate to apply in a given application. This is a nontrivial problem as these two classes of models are nonnested except only for special cases. In this article we explore the Mizon-Richard encompassing test for this particular problem. It turns out that it corresponds to fitting of the Aalen model to the martingale residuals obtained from the Cox regression analysis. We also consider a variant of this method, which relates to the proportional excess model (Martinussen and Scheike, 2002, Biometrika 89, 283-298). Large sample properties of the suggested methods under the two rival models are derived. The finite-sample properties of the proposed procedures are assessed through a simulation study. The methods are further applied to the well-known primary biliary cirrhosis data set.  相似文献   

4.
Summary .   The Cox hazards model ( Cox, 1972 , Journal of the Royal Statistical Society, Series B 34, 187–220) for survival data is routinely used in many applied fields, sometimes, however, with too little emphasis on the fit of the model. A useful alternative to the Cox model is the Aalen additive hazards model ( Aalen, 1980 , in Lecture Notes in Statistics-2 , 1–25) that can easily accommodate time changing covariate effects. It is of interest to decide which of the two models that are most appropriate to apply in a given application. This is a nontrivial problem as these two classes of models are nonnested except only for special cases. In this article we explore the Mizon–Richard encompassing test for this particular problem. It turns out that it corresponds to fitting of the Aalen model to the martingale residuals obtained from the Cox regression analysis. We also consider a variant of this method, which relates to the proportional excess model ( Martinussen and Scheike, 2002 , Biometrika 89, 283–298). Large sample properties of the suggested methods under the two rival models are derived. The finite-sample properties of the proposed procedures are assessed through a simulation study. The methods are further applied to the well-known primary biliary cirrhosis data set.  相似文献   

5.
The semiparametric Cox proportional hazards model is routinely adopted to model time-to-event data. Proportionality is a strong assumption, especially when follow-up time, or study duration, is long. Zeng and Lin (J. R. Stat. Soc., Ser. B, 69:1–30, 2007) proposed a useful generalisation through a family of transformation models which allow hazard ratios to vary over time. In this paper we explore a variety of tests for the need for transformation, arguing that the Cox model is so ubiquitous that it should be considered as the default model, to be discarded only if there is good evidence against the model assumptions. Since fitting an alternative transformation model is more complicated than fitting the Cox model, especially as procedures are not yet incorporated in standard software, we focus mainly on tests which require a Cox fit only. A score test is derived, and we also consider performance of omnibus goodness-of-fit tests based on Schoenfeld residuals. These tests can be extended to compare different transformation models. In addition we explore the consequences of fitting a misspecified Cox model to data generated under a true transformation model. Data on survival of 1043 leukaemia patients are used for illustration.  相似文献   

6.
León LF  Tsai CL 《Biometrics》2004,60(1):75-84
We propose a new type of residual and an easily computed functional form test for the Cox proportional hazards model. The proposed test is a modification of the omnibus test for testing the overall fit of a parametric regression model, developed by Stute, González Manteiga, and Presedo Quindimil (1998, Journal of the American Statistical Association93, 141-149), and is based on what we call censoring consistent residuals. In addition, we develop residual plots that can be used to identify the correct functional forms of covariates. We compare our test with the functional form test of Lin, Wei, and Ying (1993, Biometrika80, 557-572) in a simulation study. The practical application of the proposed residuals and functional form test is illustrated using both a simulated data set and a real data set.  相似文献   

7.
The standard Cox model is perhaps the most commonly used model for regression analysis of failure time data but it has some limitations such as the assumption on linear covariate effects. To relax this, the nonparametric additive Cox model, which allows for nonlinear covariate effects, is often employed, and this paper will discuss variable selection and structure estimation for this general model. For the problem, we propose a penalized sieve maximum likelihood approach with the use of Bernstein polynomials approximation and group penalization. To implement the proposed method, an efficient group coordinate descent algorithm is developed and can be easily carried out for both low- and high-dimensional scenarios. Furthermore, a simulation study is performed to assess the performance of the presented approach and suggests that it works well in practice. The proposed method is applied to an Alzheimer's disease study for identifying important and relevant genetic factors.  相似文献   

8.
Recurrent events are the natural outcome in many medical and epidemiology studies. To assess covariate effects on the gaps between consecutive recurrent events, the Cox proportional hazards model is frequently employed in data analysis. The validity of statistical inference, however, depends on the appropriateness of the Cox model. In this paper, we propose a class of graphical techniques and formal tests for checking the Cox model with recurrent gap time data. The building block of our model checking method is an averaged martingale-like process, based on which a class of multiparameter stochastic processes is proposed. This maneuver is very general and can be used to assess different aspects of model fit. Numerical simulations are conducted to examine finite-sample performance, and the proposed model checking techniques are illustrated with data from the Danish Psychiatric Central Register.  相似文献   

9.
The Cox proportional hazards regression model is the most popular approach to model covariate information for survival times. In this context, the development of high‐dimensional models where the number of covariates is much larger than the number of observations ( $p \,{\gg }\, n$ ) is an ongoing challenge. A practicable approach is to use ridge penalized Cox regression in such situations. Beside focussing on finding the best prediction rule, one is often interested in determining a subset of covariates that are the most important ones for prognosis. This could be a gene set in the biostatistical analysis of microarray data. Covariate selection can then, for example, be done by L1‐penalized Cox regression using the lasso (Tibshirani ( 1997 ). Statistics in Medicine 16 , 385–395). Several approaches beyond the lasso, that incorporate covariate selection, have been developed in recent years. This includes modifications of the lasso as well as nonconvex variants such as smoothly clipped absolute deviation (SCAD) (Fan and Li ( 2001 ). Journal of the American Statistical Association 96 , 1348–1360; Fan and Li ( 2002 ). The Annals of Statistics 30 , 74–99). The purpose of this article is to implement them practically into the model building process when analyzing high‐dimensional data with the Cox proportional hazards model. To evaluate penalized regression models beyond the lasso, we included SCAD variants and the adaptive lasso (Zou ( 2006 ). Journal of the American Statistical Association 101 , 1418–1429). We compare them with “standard” applications such as ridge regression, the lasso, and the elastic net. Predictive accuracy, features of variable selection, and estimation bias will be studied to assess the practical use of these methods. We observed that the performance of SCAD and adaptive lasso is highly dependent on nontrivial preselection procedures. A practical solution to this problem does not yet exist. Since there is high risk of missing relevant covariates when using SCAD or adaptive lasso applied after an inappropriate initial selection step, we recommend to stay with lasso or the elastic net in actual data applications. But with respect to the promising results for truly sparse models, we see some advantage of SCAD and adaptive lasso, if better preselection procedures would be available. This requires further methodological research.  相似文献   

10.
Wei G  Schaubel DE 《Biometrics》2008,64(3):724-732
Summary .   Often in medical studies of time to an event, the treatment effect is not constant over time. In the context of Cox regression modeling, the most frequent solution is to apply a model that assumes the treatment effect is either piecewise constant or varies smoothly over time, i.e., the Cox nonproportional hazards model. This approach has at least two major limitations. First, it is generally difficult to assess whether the parametric form chosen for the treatment effect is correct. Second, in the presence of nonproportional hazards, investigators are usually more interested in the cumulative than the instantaneous treatment effect (e.g., determining if and when the survival functions cross). Therefore, we propose an estimator for the aggregate treatment effect in the presence of nonproportional hazards. Our estimator is based on the treatment-specific baseline cumulative hazards estimated under a stratified Cox model. No functional form for the nonproportionality need be assumed. Asymptotic properties of the proposed estimators are derived, and the finite-sample properties are assessed in simulation studies. Pointwise and simultaneous confidence bands of the estimator can be computed. The proposed method is applied to data from a national organ failure registry.  相似文献   

11.
Right-truncated data arise when observations are ascertained retrospectively, and only subjects who experience the event of interest by the time of sampling are selected. Such a selection scheme, without adjustment, leads to biased estimation of covariate effects in the Cox proportional hazards model. The existing methods for fitting the Cox model to right-truncated data, which are based on the maximization of the likelihood or solving estimating equations with respect to both the baseline hazard function and the covariate effects, are numerically challenging. We consider two alternative simple methods based on inverse probability weighting (IPW) estimating equations, which allow consistent estimation of covariate effects under a positivity assumption and avoid estimation of baseline hazards. We discuss problems of identifiability and consistency that arise when positivity does not hold and show that although the partial tests for null effects based on these IPW methods can be used in some settings even in the absence of positivity, they are not valid in general. We propose adjusted estimating equations that incorporate the probability of observation when it is known from external sources, which results in consistent estimation. We compare the methods in simulations and apply them to the analyses of human immunodeficiency virus latency.  相似文献   

12.
Separate Cox analyses of all cause-specific hazards are the standard technique of choice to study the effect of a covariate in competing risks, but a synopsis of these results in terms of cumulative event probabilities is challenging. This difficulty has led to the development of the proportional subdistribution hazards model. If the covariate is known at baseline, the model allows for a summarizing assessment in terms of the cumulative incidence function. black Mathematically, the model also allows for including random time-dependent covariates, but practical implementation has remained unclear due to a certain risk set peculiarity. We use the intimate relationship of discrete covariates and multistate models to naturally treat time-dependent covariates within the subdistribution hazards framework. The methodology then straightforwardly translates to real-valued time-dependent covariates. As with classical survival analysis, including time-dependent covariates does not result in a model for probability functions anymore. Nevertheless, the proposed methodology provides a useful synthesis of separate cause-specific hazards analyses. We illustrate this with hospital infection data, where time-dependent covariates and competing risks are essential to the subject research question.  相似文献   

13.
The marginal Cox model approach is perhaps the most commonly used method in the analysis of correlated failure time data (Cai, 1999; Cai and Prentice, 1995; Lin, 1994; Wei, Lin and Weissfeld, 1989). It assumes that the marginal distributions for the correlated failure times can be described by the Cox model and leaves the dependence structure completely unspecified. This paper discusses the assessment of the marginal Cox model for correlated interval-censored data and a goodness-of-fit test is presented for the problem. The method is applied to a set of correlated interval-censored data arising from an AIDS clinical trial.  相似文献   

14.
This paper deals with testing the functional form of the covariate effects in a Cox proportional hazards model with random effects. We assume that the responses are clustered and incomplete due to right censoring. The estimation of the model under the null (parametric covariate effect) and the alternative (nonparametric effect) is performed using the full marginal likelihood. Under the alternative, the nonparametric covariate effects are estimated using orthogonal expansions. The test statistic is the likelihood ratio statistic, and its distribution is approximated using a bootstrap method. The performance of the proposed testing procedure is studied through simulations. The method is also applied on two real data sets one from biomedical research and one from veterinary medicine.  相似文献   

15.
Summary The standard estimator for the cause‐specific cumulative incidence function in a competing risks setting with left truncated and/or right censored data can be written in two alternative forms. One is a weighted empirical cumulative distribution function and the other a product‐limit estimator. This equivalence suggests an alternative view of the analysis of time‐to‐event data with left truncation and right censoring: individuals who are still at risk or experienced an earlier competing event receive weights from the censoring and truncation mechanisms. As a consequence, inference on the cumulative scale can be performed using weighted versions of standard procedures. This holds for estimation of the cause‐specific cumulative incidence function as well as for estimation of the regression parameters in the Fine and Gray proportional subdistribution hazards model. We show that, with the appropriate filtration, a martingale property holds that allows deriving asymptotic results for the proportional subdistribution hazards model in the same way as for the standard Cox proportional hazards model. Estimation of the cause‐specific cumulative incidence function and regression on the subdistribution hazard can be performed using standard software for survival analysis if the software allows for inclusion of time‐dependent weights. We show the implementation in the R statistical package. The proportional subdistribution hazards model is used to investigate the effect of calendar period as a deterministic external time varying covariate, which can be seen as a special case of left truncation, on AIDS related and non‐AIDS related cumulative mortality.  相似文献   

16.
The additive hazards model specifies the effect of covariates on the hazard in an additive way, in contrast to the popular Cox model, in which it is multiplicative. As the non-parametric model, additive hazards offer a very flexible way of modeling time-varying covariate effects. It is most commonly estimated by ordinary least squares. In this paper, we consider the case where covariates are bounded, and derive the maximum likelihood estimator under the constraint that the hazard is non-negative for all covariate values in their domain. We show that the maximum likelihood estimator may be obtained by separately maximizing the log-likelihood contribution of each event time point, and we show that the maximizing problem is equivalent to fitting a series of Poisson regression models with an identity link under non-negativity constraints. We derive an analytic solution to the maximum likelihood estimator. We contrast the maximum likelihood estimator with the ordinary least-squares estimator in a simulation study and show that the maximum likelihood estimator has smaller mean squared error than the ordinary least-squares estimator. An illustration with data on patients with carcinoma of the oropharynx is provided.  相似文献   

17.
The Cox proportional hazards model has become the standard for the analysis of survival time data in cancer and other chronic diseases. In most studies, proportional hazards (PH) are assumed for covariate effects. With long-term follow-up, the PH assumption may be violated, leading to poor model fit. To accommodate non-PH effects, we introduce a new procedure, MFPT, an extension of the multivariable fractional polynomial (MFP) approach, to do the following: (1) select influential variables; (2) determine a sensible dose-response function for continuous variables; (3) investigate time-varying effects; (4) model such time-varying effects on a continuous scale. Assuming PH initially, we start with a detailed model-building step, including a search for possible non-linear functions for continuous covariates. Sometimes a variable with a strong short-term effect may appear weak or non-influential if 'averaged' over time under the PH assumption. To protect against omitting such variables, we repeat the analysis over a restricted time-interval. Any additional prognostic variables identified by this second analysis are added to create our final time-fixed multivariable model. Using a forward-selection algorithm we search for possible improvements in fit by adding time-varying covariates. The first part to create a final time-fixed model does not require the use of MFP. A model may be given from 'outside' or a different strategy may be preferred for this part. This broadens the scope of the time-varying part. To motivate and illustrate the methodology, we create prognostic models from a large database of patients with primary breast cancer. Non-linear time-fixed effects are found for progesterone receptor status and number of positive lymph nodes. Highly statistically significant time-varying effects are present for progesterone receptor status and tumour size.  相似文献   

18.
The focus of many medical applications is to model the impact of several factors on time to an event. A standard approach for such analyses is the Cox proportional hazards model. It assumes that the factors act linearly on the log hazard function (linearity assumption) and that their effects are constant over time (proportional hazards (PH) assumption). Variable selection is often required to specify a more parsimonious model aiming to include only variables with an influence on the outcome. As follow-up increases the effect of a variable often gets weaker, which means that it varies in time. However, spurious time-varying effects may also be introduced by mismodelling other parts of the multivariable model, such as omission of an important covariate or an incorrect functional form of a continuous covariate. These issues interact. To check whether the effect of a variable varies in time several tests for non-PH have been proposed. However, they are not sufficient to derive a model, as appropriate modelling of the shape of time-varying effects is required. In three examples we will compare five recently published strategies to assess whether and how the effects of covariates from a multivariable model vary in time. For practical use we will give some recommendations.  相似文献   

19.
Proportional hazards regression for cancer studies   总被引:1,自引:0,他引:1  
Ghosh D 《Biometrics》2008,64(1):141-148
Summary.   There has been some recent work in the statistical literature for modeling the relationship between the size of cancers and probability of detecting metastasis, i.e., aggressive disease. Methods for assessing covariate effects in these studies are limited. In this article, we formulate the problem as assessing covariate effects on a right-censored variable subject to two types of sampling bias. The first is the length-biased sampling that is inherent in screening studies; the second is the two-phase design in which a fraction of tumors are measured. We construct estimation procedures for the proportional hazards model that account for these two sampling issues. In addition, a Nelson–Aalen type estimator is proposed as a summary statistic. Asymptotic results for the regression methodology are provided. The methods are illustrated by application to data from an observational cancer study as well as to simulated data.  相似文献   

20.
This paper develops methodology for estimation of the effect of a binary time-varying covariate on failure times when the change time of the covariate is interval censored. The motivating example is a study of cytomegalovirus (CMV) disease in patients with human immunodeficiency virus (HIV) disease. We are interested in determining whether CMV shedding predicts an increased hazard for developing active CMV disease. Since a clinical screening test is needed to detect CMV shedding, the time that shedding begins is only known to lie in an interval bounded by the patient's last negative and first positive tests. In a Cox proportional hazards model with a time-varying covariate for CMV shedding, the partial likelihood depends on the covariate status of every individual in the risk set at each failure time. Due to interval censoring, this is not always known. To solve this problem, we use a Monte Carlo EM algorithm with a Gibbs sampler embedded in the E-step. We generate multiple completed data sets by drawing imputed exact shedding times based on the joint likelihood of the shedding times and event times under the Cox model. The method is evaluated using a simulation study and is applied to the data set described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号