首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metanephric mesenchyme becomes converted into epithelial tubules if cultured in transfilter contact with an inductor tissue. The expression of intermediate filaments (IFs), used as cell-type-specific markers has been studied in this model system for differentiation and organogenesis. In immunofluorescence microscopy of frozen sections, the undifferentiated cells of isolated metanephric mesenchymes uniformly showed IFs of vimentin type only. Also, when cultured as a monolayer, cells from the uninduced mesenchymes showed only vimentin filaments. In frozen sections of transfilter explants, epithelial tubules apparently negative for vimentin could be seen after 3 days in culture, but expression of cytokeratin could not be demonstrated in the developing tubules until the fourth day of culture. Sections of explants cultured further showed tubule cells with distinct fibrillar cytokeratin positivity. The appearance of cytokeratin in the explants was also demonstrated with immunoblotting experiments, using two different cytokeratin antibodies. Expression of IFs was further examined in monolayer cultures of metanephric mesenchymes which had been initially exposed to a short transfilter induction pulse. In these experiments, cytokeratin-positive cells could be demonstrated after a total of 4 days in culture. Double immunofluorescence experiments showed varying amounts of vimentin in the cytokeratin-positive cells: after 4 days in culture, most cytokeratin-positive cells still showed vimentin-positivity although often in a nonfibrillar form. During further culture, gradual disappearance of vimentin-specific fluorescence was observed in cytokeratin-positive cells. The results suggest that the vimentin-positive metanephric mesenchyme cells lose their fibrillar vimentin organization upon induction that leads to kidney tubule formation. This change may be essential for the transformation from an undifferentiated mesenchymal cell into a specialized epithelial cell. Cytokeratin filaments, regarded as a marker for epithelial cells, seem to appear simultaneously with or soon after the change in vimentin organization. These changes in IF expression also occur in monolayer cultures of mesenchyme cells initially exposed to a short transfilter induction pulse. This suggests that epithelial differentiation, as revealed by the emergence of cytokeratin positivity, may occur even in the absence of a clear morphological differentiation and three-dimensional organization of the cells.  相似文献   

2.
Summary Intermediate filaments of epithelial cells generally consist of specific combinations of keratins. However, cultured epithelial cells from certain tissues and some epithelial tumors have been shown also to express vimentin. In the present study, the expression of vimentin by epithelial cells in healing corneal wounds (partial thickness penetrating wounds) and in tissue culture was analyzed. Both immunohistochemical and immunotransblot analyses indicated that although vimentin was not detected in the normal rabbit corneal epithelium in vivo, cultured rabbit corneal epithelial cells co-express keratins and vimentin. At 1 day post-wounding, vimentin was not detectable in the epithelial cells that had covered the denuded stroma. However, at 2 days post-wounding, the epithelium at the base of the epithelial plug immunoreacted with both anti-vimentin and antikeratin monoclonal antibodies. Immunotransblot analyses of the extracts of the epithelial plugs confirmed the presence of vimentin (Mr=58k). The 58k band was not detected in the extract of normal rabbit corneal epithelium. At day/5, vimentin was no longer detectable in the epithelium. This study demonstrated that corneal epithelial cells transiently co-express vimentin and keratins in vivo during wound healing and in tissue culture. The time-course of the transient expression of vimentin suggests that the vimentin expression in the epithelial cells during healing is not linked to cell proliferation or to the centripetal migration of the epithelium during early stages (first 24 h) of healing, but may be linked to cell-matrix interactions or the migration of basal cells in the upward direction at the following stage of healing.  相似文献   

3.
Interactions occurring between malignant cells and the stromal microenvironment heavily influence tumor progression. We investigated whether this cross-talk affects some molecular and functional aspects specifically correlated with the invasive phenotype of breast tumor cells (i.e. adhesion molecule expression, membrane fluidity, migration) by co-culturing mammary cancer cells exhibiting different degrees of metastatic potential (MDA-MB-231>MCF-7) with fibroblasts isolated from breast healthy skin (normal fibroblasts, NFs) or from breast tumor stroma (cancer-associated fibroblasts, CAFs) in 2D or 3D (nodules) cultures. Confocal immunofluorescence analysis of the epithelial adhesion molecule E-cadherin on frozen nodule sections demonstrated that NFs and CAFs, respectively, induced or inhibited its expression in MCF-7 cells. An increase in the mesenchymal adhesion protein N-cadherin was observed in CAFs, but not in NFs, as a result of the interaction with both kinds of cancer cells. CAFs, in turn, promoted N-cadherin up-regulation in MDA-MB-231 cells and its de novo expression in MCF-7 cells. Beyond promotion of “cadherin switching”, another sign of the CAF-triggered epithelial-mesenchymal transition (EMT) was the induction of vimentin expression in MCF-7 cells. Plasma membrane labeling of monolayer cultures with the fluorescent probe Laurdan showed an enhancement of the membrane fluidity in cancer cells co-cultured with NFs or CAFs. An increase in lipid packing density of fibroblast membranes was promoted by MCF-7 cells. Time-lapsed cell tracking analysis of mammary cancer cells co-cultured with NFs or CAFs revealed an enhancement of tumor cell migration velocity, even with a marked increase in the directness induced by CAFs.Our results demonstrate a reciprocal influence of mammary cancer and fibroblasts on various adhesiveness/invasiveness features. Notably, CAFs'' ability to promote EMT, reduction of cell adhesion, increase in membrane fluidity, and migration velocity and directness in mammary cancer cells can be viewed as an overall progression- and invasion-promoting effect.  相似文献   

4.
Summary Antibodies against intermediate-sized filaments, of the prekeratin or vimentin type, were used to investigate the presence of these filaments by indirect immunofluorescence microscopy in cultured and non-cultured amniotic fluid cells, in frozen sections of the placenta and in isolated cells of the amniotic epithelium. Two major classes of cells can be cultured from amniotic fluids, namely cells of epithelial origin containing filaments of the prekeratin type and cells of different origin which contain filaments of the vimentin type but are negative when tested with antibodies to epidermal prekeratin. The presence of prekeratin type filaments correlates with the morphology of colonies of amniotic fluid cell cultures in vitro as classified by Hoehn et al. (1974). Cells of E-type colonies are shown to be of epithelial origin. In contrast our data indicate a different origin of almost all cells of F-type colonies and of the large majority of cells of AF-type colonies. Cells of epithelial origin and positively stained with antibodies to epidermal prekeratin are occasionally scattered in F-type colonies and in variable percentages (up to 30%) in AF-type colonies. Surprisingly, cryostat sections of the amniotic epithelium and isolated groups of amniotic cells showed positive reactions with both antibodies to vimentin and prekeratin. The possibility that amniotic cells may be different from other epithelial cells in that they contain both types of filaments simultaneously already in situ is presently under investigation.Part of this work is included in the doctoral thesis of Irmgard Treiss to be submitted to the Faculty of Medicine of the University of Heidelberg  相似文献   

5.
To further develop the hen as a model of ovarian adenocarcinoma, we have studied normal and neoplastic ovaries as well as cultured cells from the ovarian surface epithelium (OSE). We characterized the OSE layer of the hen for specific histologic markers and evaluated these markers on tumor tissue. We also isolated and characterized the epithelial cells that are the likely source of the ovarian tumors of the hen. The surface epithelium of normal ovaries demonstrated positive staining for cytokeratin, proliferating cell nuclear antigen (PCNA), progesterone receptor (PR), and negative staining for vimentin. Ovarian tumors demonstrated positive cytokeratin, PCNA, PR, and weak vimentin staining in the gland-like areas. Epithelial cell cultures were obtained by an explant method utilizing small and large yellow follicles. These cells were positive for cytokeratin and negative for vimentin on Days 1 and 3. By Day 10, cytokeratin protein expression was less for some cells, and vimentin expression was weakly present in some cells. Expression of PCNA was observed at Days 1 and 3, but was rarely seen in cells cultured for 10 days. Expression of PR was observed on Day 10 after 24-hr estrogen treatment. Epithelial cells grew slowly in culture, and were susceptible to trypsin or other dissociation treatments.  相似文献   

6.
Histochemical identification of cultured cells from human endometrium   总被引:1,自引:0,他引:1  
Histochemical techniques have been applied to the identification of cell types cultured from human endometrium. Previous work from this laboratory characterized two principal cell types found in cultures of endometrium: a mature epithelial cell and another cell which was classified as the endometrial stromal cell based on light and electron microscopy. In this report we compare the histochemical staining of endometrial tissue in frozen sections to that of cultured cells. These results confirm the epithelial and stromal nature of the respective cell types. Several markers were found that could distinguish between cells of epithelial and stromal origin. The enzymes alkaline phosphatase, gamma-glutamyltranspeptidase, peroxidase, and beta-glucuronidase were localized in glandular and surface epithelia in frozen sections and in colonies of epithelial cells in culture. Stroma in frozen sections and cultured stromal cells contained leucine aminopeptidase and fibronectin. Epithelia in sections and in culture could also be distinguished from cells of stromal origin by preferential binding of lotus and peanut lectin. Several other markers were found in both endometrial epithelium and stroma.  相似文献   

7.
The cell of origin of the nonparenchymal epithelioid cells that emerge in liver cell cultures is unknown. Cultures of rat hepatocytes and several types of nonparenchymal cells obtained by selective tissue dispersion procedures were typed with monoclonal antibodies to rat liver cytokeratin and vimentin, polyvalent antibodies to cow hoof cytokeratins and porcine lens vimentin, and monoclonal antibodies to surface membrane components of ductular oval cells and hepatocytes. Immunoblot analysis revealed that, in cultured rat liver nonparenchymal epithelial cells, the anti-rat hepatocyte cytokeratin antibody recognized a cytokeratin of relative mass (Mr) 55,000 and the anti-cow hoof cytokeratin antibody reacted with a cytokeratin of Mr 52,000, while the anti-vimentin antibodies detected vimentin in both cultured rat fibroblasts and nonparenchymal epithelial cells. Analyses on the specificity of anti-cytokeratin and anti-vimentin antibodies toward the various cellular structures of liver by double immunofluorescence staining of frozen tissue sections revealed unique reactivity patterns. For example, hepatocytes were only stained with anti-Mr 55,000 cytokeratin antibody, while the sinusoidal cells reacted only with the anti-vimentin antibodies. In contrast, epithelial cells of the bile ductular structures and mesothelial cells of the Glisson capsula reacted with all the anti-cytokeratin and anti-vimentin antibodies. It should be stressed, however, that the reaction of the anti-vimentin antibodies on bile ductular cells was weak. The same analysis on tissue sections using the anti-ductular oval cell antibody revealed that it reacted with bile duct structures but not with the Glisson capsula. The anti-hepatocyte antibody reacted only with the parenchymal cells. The differential reactivity of the anti-cytokeratin and anti-vimentin antibodies with the various liver cell compartments was confirmed in primary cultures of hepatocytes, sinusoidal cells, and bile ductular cells, indicating that the present panel of antibodies to intermediate filament constituants allowed a clear-cut distinction between cultured nonparenchymal epithelial cells, hepatocytes, and sinusoidal cells. Indirect immunofluorescence microscopy on nonfixed and paraformaldehyde-fixed cultured hepatocytes and bile ductular cells further confirmed that both anti-hepatocyte and anti-ductular oval cell antibodies recognized surface-exposed components on the respective cell types.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Epithelial cell differentiation frequently occurs in situ in conjunction with supporting mesenchyme or connective tissue. In embryonic development the importance of the supporting mesenchyme for cytodifferentiation and morphogenesis has been demonstrated in several epithelial tissues, but the importance of epithelial-connective tissue interactions is less well studied in adult epithelial organs. We have investigated the interaction of adult mammary epithelial cells with adipocytes, which compose the normal supporting connective tissue in the mammary gland. Mammary epithelial cells from mice in various physiological states were cultured on cellular substrates of adipocytes formed from cells of the 3T3-L1 preadipocyte cell line. We found that there were two distinct phases to the interaction of epithelial cells with adipocytes. Cytodifferentiation of the epithelial cells and milk protein production were dependent on lactogenic hormones (insulin, hydrocortisone, and prolactin), whereas ductal morphogenesis was lactogenic hormone independent. When cultured on preadipocytes or adipocytes, mammary epithelial cells from never pregnant, pregnant, lactating, and involuting mice responded to lactogenic hormones rapidly by producing and secreting large amounts of alpha-, beta-, and gamma-casein and alpha-lactalbumin. This response was seen in individual as well as in clusters of epithelial cells, but was not seen if the same cells were cultured on tissue culture dishes without adipocytes, on fibroblasts (human newborn foreskin fibroblasts) or in the presence of adipocytes but in the absence of lactogenic hormones. Continued incubation of mammary epithelial cells on adipocytes in the presence or absence of lactogenic hormones resulted in the formation of a branching ductal system. Mammary epithelial cells in ducts that formed in the absence of lactogenic hormones produced no casein, but rapidly synthesized casein when subsequently exposed to these hormones. Ultrastructural studies revealed that the formation of a basement membrane occurs only in co-cultures of mammary epithelium with adipocytes or preadipocytes. Ultrastructural changes associated with secretion occurred only in the presence of lactogenic hormones. We propose that growth and formation of a ductal system in vitro can occur in the absence of lactogenic hormones, but that certain environment-associated events must occur if the epithelium is to become responsive to lactogenic hormones and undergo the cytodifferentiation associated with lactation.  相似文献   

9.
Using five different monoclonal antibodies to vimentin, we have examined the expression of vimentin in cryostat sections and serum-free cultures of normal human breast tissue. In cryostat sections, myoepithelial cells as well as stromal cells showed immunoreactivity to vimentin, irrespective of the antibody used. In contrast, luminal epithelial cells were negative for vimentin, but positive for keratin K18. In culture, myoepithelial cells showed immunoreactivity to vimentin from their first appearance in monolayer. Moreover, a fraction of luminal epithelial cells expressed vimentin in addition to keratin K18. We found a clear, reversible correlation between proliferation, determined by incorporation of [3H]-TdR, and induction of vimentin in the luminal epithelial cells. Thus, in growth-stimulated cultures on a medium containing cholera toxin (CT), epidermal growth factor (EGF), transferrin (Tf), hydrocortisone (H) and insulin (I), the fraction of vimentin-positive luminal epithelial cells increased, while it decreased within 14 days from approximately 36% to 3% on a medium containing CT and EGF, only. We therefore conclude: (1) vimentin is constantly expressed in myoepithelial cells in situ and in vitro, and (2) expression of vimentin in luminal epithelial cells in vitro is not a result of monolayer cultivation as such, but rather associated with the increased growth rate seen in culture.  相似文献   

10.
奶山羊乳腺上皮细胞的分离、培养及鉴定   总被引:4,自引:0,他引:4  
应用组织块培养法高密度培养、连续传代法建立西农萨能奶山羊乳腺上皮细胞体外培养体系,通过生长曲线绘制、核型分析、免疫荧光染色 (角蛋白、上皮膜抗原、波形蛋白、β-酪蛋白)、油红染色及β-酪蛋白基因的RT-PCR分析进行培养细胞鉴定。实验结果表明细胞生长曲线为典型的S型,染色体数目众数为60,细胞角蛋白、上皮膜抗原、波形蛋白、β-酪蛋白表达均呈阳性,油红染色后可见细胞质内的脂滴,且细胞表达酪蛋白mRNA。说明运用本方法培养的细胞为正常的乳腺上皮细胞,并具有一定的泌乳功能。  相似文献   

11.
Primary monolayer cultures of normal and malignant human mammary epithelial cells were tested for fibronectin by indirect immunofluorescence using antisera specific for fibronectin. This protein was not detectable on either the normal or malignant epithelial cells. Similar results were obtained for normal and malignant mouse mammary epithelial cell cultures. Control normal and transformed fibroblasts exhibited the expected result: the normal cells were positive and the transformed cells were negative. With the use of supernatant fluids from the same cultures or an agar-overlay assay on viable cells, high levels of plasminogen-dependent fibrinolytic activity were detectable in both the normal and malignant mammary cells. Thus, two characteristics that distinguish normal from transformed fibroblasts do not serve as markers of malignancy in mammary epithelial/carcinoma systems.  相似文献   

12.
Summary Histochemical techniques have been applied to the identification of cell types cultured from human endometrium. Previous work from this laboratory characterized two principtal cell types found in cultures of endometrium: a mature epithelial cell and another cell which was classified as the endometrial stromal cell based on light and electron microscopy. In this report we compare the histochemical staining of endometrial tissue in frozen sections to that of cultured cells. These results confirm the epithelial and stromal nature of the respective cell types. Several markers were found that could distinguish between cells of epithelial and stromal origin. The enzymes alkaline phosphatase, γ-glutamyltranspeptidase, peroxidase, and β-glucuronidase were localized in glandular and surface epithelia in frozen sections and in colonies of epithelial cells in culture. Stroma in frozen sections and cultured stromal cells contained leucine aminopeptidase and fibronectin. Epithelial sections and in culture could also be distinguished from cells of stromal origin by preferential binding of lotus and peanut lectin. Several other markers were found in both endometrial epithelium and stroma. J. M. S. was recipient of National Research Service Award CA09156 (National Cancer Institute); K. G. N. was recipient of National Research Service Award ES07017 (National Institute of Environmental Health Sciences); and D. G. K. was recipient of Research Career Development Award CA00431 from the National Cancer Institute, Bethesda, MD. Supported by Grant CA 31733 from the National Cancer Institute, Bethesda, MD.  相似文献   

13.
Summary Interactions between epithelial cells and their environment are critical for normal function. Mammary epithelial cells require hormonal and extracellular matrix (ECM) signalling for the expression of tissue specific characteristics. With regard to ECM, cultured mammary epithelial cells synthesize and secrete milk proteins on stromal collagen I matrices. The onset of function coincides both with morphogenesis of a polarized epithelium and with deposition of basement membrane ECM basal to the cell layer. Mammary specific morphogenesis and biochemical differentiation is induced if mammary cells are cultured directly on exogenous basement membrane (EHS). Thus ECM may effect function by the concerted effect of permissivity for cell shape changes and the direct biochemical signalling of basement membrane molecules.A model is discussed where initial ECM control of mammary epithelial cell function originates in the interstitial matrix of stroma and subsequently transfers to the basement membrane when the epithelial cells have accumulated and deposited an organized basement membrane matrix.Dedicated to Professor Stuart Patton on the occasion of his 70th birthday.  相似文献   

14.
15.
Cell-cell interactions promote mammary epithelial cell differentiation   总被引:16,自引:6,他引:10       下载免费PDF全文
Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interaction. Mammary epithelium from mid-pregnant mice was plated on confluent irradiated monolayers of 3T3-L1 cells, a subclone of the Swiss 3T3 cell line that differentiates into adipocytes in monolayer culture and other cell monolayers (3T3-C2 cells, Swiss 3T3 cells, and human foreskin fibroblasts). Casein was synthesized by mammary epithelium only in the presence of co-cultured cells and the lactogenic hormone combination of insulin, hydrocortisone, and prolactin. Synthesis and accumulation of alpha-, beta-, and gamma-mouse casein within the epithelium was shown by immunohistochemical staining of cultured cells with anti-casein monoclonal antibodies, and the specificity of the immunohistochemical reaction was demonstrated using immunoblots. A competitive immunoassay was used to measure the amount of casein secreted into the culture medium. In a 24-h period, mammary epithelium co-cultured with 3T3-L1 cells secreted 12-20 micrograms beta-casein per culture dish. There was evidence of specificity in the cell-cell interaction that mediates hormone-dependent casein synthesis. Swiss 3T3 cells, newborn foreskin fibroblasts, substrate-attached material ("extracellular matrix"), and tissue culture plastic did not support casein synthesis, whereas monolayers of 3T3-L1 and 3T3-C2 cells, a subclone of Swiss 3T3 cells that does not undergo adipocyte differentiation, did. We conclude that interaction between mammary epithelium and other specific nonepithelial cells markedly influences the acquisition of hormone sensitivity of the epithelium and hormone-dependent differentiation.  相似文献   

16.
Three human differentiation antigens (MU78, MT334, and MQ49) have been defined by mouse monoclonal antibodies developed from mice immunized with ovarian carcinoma cell lines. Their distribution was determined on 148 cultured cell lines of various histologic types and on frozen sections of 16 normal tissues. MU78 was found in fibrillar structures in soft connective tissue with a distribution resembling that of elastin fibers; however, elastin fibers in elastic cartilage and in the aorta were nonreactive. MU78 was detected in cultured carcinoma cells of various histologic types, where it had a nonfibrillar, cytoplasmic distribution, but was not detected in normal epithelial cells in frozen sections. Cultured fibroblasts, astrocytomas, melanomas, and lymphomas did not contain MU78. In cell lines, MU78 appears to be a protein of 2000-5000 daltons. The other two antigens, MT334 and MQ49, are both mucin-like molecules, and the determinants are probably carbohydrate in nature. Of the normal tissues examined, MT334 was detected only in goblet cells of the colon, though it was present in a variety of carcinomas in culture. It was detected as both a cytoplasmic and secreted component. MQ49 was detected in various secretory epithelial cells, in Hassall's corpuscles in the thymus, and in cultured carcinomas of various histologic types. It was found on the cell surface as well as in the cytoplasm and is present on a glycolipid as well as on a sulfated mucin. These results, and results of other recent studies, demonstrate the importance of mucin-like molecules as antigens in epithelial cells and secretions.  相似文献   

17.
Summary Membranous epithelial (M) cells within the follicle-associated epithelium which overlies gut-associated lymphoid tissue in Peyer's patches and of appendix have been shown by immunocytochemical staining, in rabbit, to contain both vimentin- and cytokeratin-type intermediate filaments. The specificity of vimentin immunostaining has been confirmed by blocking with purified vimentin and by immunoblotting. No evidence was obtained for the expression of vimentin in rat, mouse or human M cells. The possible significance of vimentin-expression in these specialized epithelial cells and the potential use of vimentin as a positive marker for M cells are discussed.  相似文献   

18.
Summary We have used enzymatic and immunomagnetic techniques for the physical separation of the basal and luminal epithelium of the human mammary gland. Immediately after tissue dissociation and cell sorting, we have examined the steady-state CK composition of these cells individually by direct two-dimensional gel electrophoresis of intermediate filament extracts. Our results demonstrate that cytokeratins typical of simple and stratified epithelial cells are simultaneously expressed by both mammary epithelial subclasses in vivo. Moreover, the entire spectrum of cytokeratins seen in vivo is also maintained in short-term cultures of human mammary epithelium. A comparison of the data obtained by direct cytokeratin analysis with published indirect immunolocalization studies is presented. The ability to isolate purified epithelial subsets from normal human breast tissue by a simple immunomagnetic procedure demonstrated here can facilitate the development of relevant model systems for studying the regulatory components in growth, differentiation and malignant transformation of the human breast.  相似文献   

19.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation initiated by dedifferentiation and proliferation of renal tubular epithelial cells. Renal tubular epithelial cells (RTC, derived from normal kidney tissue) in primary cultures exhibit both homogeneous expression of γ-glutamyl transferase and low molecular weight cytokeratin, two different markers for proximal and distal renal epithelial cells, respectively. RTC in cultures also abnormally express the dedifferentiation markers vimentin and PAX-2, which are proteins normally expressed in epithelial cells lining cysts in ADPKD kidneys but not tubular cells in normal kidneys. In contrast, different cultures of cystic epithelial cells (CEC, derived from the cysts walls of polycystic kidneys) display variable expression of cytokeratin, γ-glutamyl transferase, and PAX-2, but a constant level of vimentin. Importantly, RTC and CEC exhibit the capacity to convert to their respective original structures by forming tubules and cysts, respectively, when cultured in a three-dimensional gel matrix, whereas HK-2, LLC-PK1, and MDCK renal epithelial cell lines form cell aggregates or cysts. Our study demonstrates that the marker expression of the various epithelial cell types is not highly stable in primary cultures. Their modulation is different in cells originating from normal and ADPKD kidneys and in cells cultured in monolayer and three-dimensions. These results indicate the plasticity of epithelial cells that display a mixed epithelial/dedifferentiated/mesenchymal phenotype during their expansion in culture. However, RTC and CEC morphogenic epithelial properties in three-dimensional cultures are similar to those in vivo. Thus, this model is useful for studying the mechanisms leading to tubulogenesis and cystogenesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by a grant from The Polycystic Kidney Foundation. We gratefully acknowledge the support of the Children’s Medical Research Institute and Children’s Miracle Network Foundation.  相似文献   

20.
Eph receptor tyrosine kinases, including EphA2, are expressed in the mammary gland. However, their role in mammary gland development remains poorly understood. Using EphA2-deficient animals, we demonstrate for the first time that EphA2 receptor function is required for mammary epithelial growth and branching morphogenesis. Loss of EphA2 decreased penetration of mammary epithelium into fat pad, reduced epithelial proliferation, and inhibited epithelial branching. These defects appear to be intrinsic to loss of EphA2 in epithelium, as transplantation of EphA2-deficient mammary tissue into wild-type recipient stroma recapitulated these defects. In addition, HGF-induced mammary epithelial branching morphogenesis was significantly reduced in EphA2-deficient cells relative to wild-type cells, which correlated with elevated basal RhoA activity. Moreover, inhibition of ROCK kinase activity in EphA2-deficient mammary epithelium rescued branching defects in primary three-dimensional cultures. These results suggest that EphA2 receptor acts as a positive regulator in mammary gland development, functioning downstream of HGF to regulate branching through inhibition of RhoA. Together, these data demonstrate a positive role for EphA2 during normal mammary epithelial proliferation and branching morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号