首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L A Chung  E London 《Biochemistry》1988,27(4):1245-1253
Low pH is believed to trigger membrane penetration by diphtheria toxin in vivo. The effect of pH upon the binding of the toxin to unilamellar model membrane vesicles was determined by using a fluorescence quenching assay. A series of studies were undertaken to determine the effect of lipid composition upon the binding of lipids to the toxin. The binding of toxin to various small unilamellar vesicles of zwitterionic or anionic lipids was similar in extent and was accompanied by deep penetration of the toxin into the fatty acyl chains, in agreement with previous studies. However, the transition pH, which is the pH at and below which toxin binding becomes significant, depended upon the fraction of anionic lipids, being highest with model membranes composed totally of anionic lipids (pH 5.8) and lowest with membranes composed of zwitterionic lipids (pH 5.2). Except for vesicle charge, the transition pH was independent of the nature of the lipid polar groups used. High ionic strength, which had no effect on the transition pH with zwitterionic vesicles, was found to shift the transition pH with totally anionic vesicles to pH 5.2. This suggests that both direct protein-lipid electrostatic interactions and the ionic double layer, which gives rise to a low local pH around anionic vesicles, contribute to the shift in the transition pH. The effect of lipid composition upon the kinetics and strength of binding was also examined. At low pH, binding was rapid and tight. Binding to vesicles containing 20 wt % anionic phosphatidylglycerol was faster and tighter than binding to vesicles of zwitterionic phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Equilibrium binding studies on the interaction between the anthracycline daunomycin and plasma membrane fractions from daunomycin-sensitive and -resistant murine leukemia P-388 cells are presented. Drug binding constants (KS) are 15,000 and 9800 M-1 for plasma membranes from drug-sensitive and drug-resistant cells, respectively. Drug binding to the membranes is not affected by either (i) thermal denaturation of membrane proteins or (ii) proteolytic treatment with trypsin, thus suggesting that the protein components of the membranes do not have a major role in determining the observed drug binding. Also, fluorescence resonance energy transfer between tryptophan and daunomycin in the membranes indicates that interaction of protein components with the drug should not be responsible for the observed differences in drug binding exhibited by plasma membranes from drug-sensitive and -resistant cells. Plasma membranes from drug-sensitive cells contain more phosphatidylserine and slightly less cholesterol than membranes from drug-resistant cells. Differences in the content of the acidic phospholipid between the two plasma membranes seem to produce a different ionic environment at membrane surface domains, as indicated by titration of a membrane-incorporated, pH-sensitive fluorescence probe. The possible role of membrane lipids in modulating drug binding to the membranes was tested in equilibrium binding studies using model lipid vesicles made from phosphatidylcholine, phosphatidylserine, and cholesterol in different proportions. The presence of phosphatidylserine greatly increases both the affinity and the stoichiometry of daunomycin binding to model lipid vesicles. The similarity between the effects of phosphatidylserine and other negatively charged compounds such as dicetyl phosphate, cardiolipin, or phosphatidic acid suggests that electrostatic interactions are important in the observed binding of the drug.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Plasma membrane vesicles obtained by density gradient centrifugation of bovine adrenal medullary homogenates were analyzed by electron microscopic methods, including negative staining, ultrathin sections and freeze-fracture replicas. Rapid freezing showed the intramembrane structure of plasma membrane vesicles to be distinct from that of other organelle membranes, such as chromaffin granules. Cytochemical demonstration of acetylcholinesterase (EC 3.1.1.7) activity on most membrane profiles confirmed that plasma membrane vesicles are derived predominantly from plasma membranes. About half of the plasma membrane vesicles were smaller than 0.15 micron and almost none larger than 0.55 micron. Practically all were composed of single shells. Most vesicles were impermeable to cytochemical markers of the size of Ruthenium red (Mr 800) and none were permeable to markers larger than 40 kDa. Surface charge probes, concanavalin A binding and endogenous actin decoration with heavy meromyosin indicated that the major fraction of plasma membrane vesicles is oriented right-side-out. A minor population with opposite orientation could also be detected. Isotonic ionic media caused vesicle aggregation in suspensions of plasma membrane vesicles and chromaffin granules. Freeze-fracturing always revealed clusters of membrane-intercalated particles at the sites of contact between aggregated membranes.  相似文献   

4.
The cell surface complex (Detering et al., 1977, J. Cell Biol. 75, 899-914) of the sea urchin egg consists of two subcellular organelles: the plasma membrane, containing associated peripheral proteins and the vitelline layer, and the cortical vesicles. We have now developed a method of isolating the plasma membrane from this complex and have undertaken its biochemical characterization. Enzymatic assays of the cell surface complex revealed the presence of a plasma membrane marker enzyme, ouabain-sensitive Na+/K+ ATPase, as well as two cortical granule markers, proteoesterase and ovoperoxidase. After separation from the cortical vesicles and purification on a sucrose gradient, the purified plasma membranes are recovered as large sheets devoid of cortical vesicles. The purified plasma membranes are highly enriched in the Na+/K+ ATPase but contain only very low levels of the proteoesterase and ovoperoxidase. Ultrastructurally, the purified plasma membrane is characterized as large sheets containing a "fluffy" proteinaceous layer on the external surface, which probably represent peripheral proteins, including remnants of the vitelline layer. Extraction of these membranes with Kl removes these peripheral proteins and causes the membrane sheets to vesiculate. Polyacrylamide gel electrophoresis of the cell surface complex, plasma membranes, and Kl-extracted membranes indicates that the plasma membrane contains five to six major proteins species, as well as a large number of minor species, that are not extractable with Kl. The vitelline layer and other peripheral membrane components account for a large proportion of the membrane-associated protein and are represented by at least six to seven polypeptide components. The phospholipid composition of the Kl-extracted membranes is unique, being very rich in phosphatidylethanolamine and phosphatidylinositol. Cholesterol was found to be a major component of the plasma membrane. Before Kl extraction, the purified plasma membranes retain the same species-specific sperm binding property that is found in the intact egg. This observation indicates that the sperm receptor mechanisms remain functional in the isolated, cortical vesicle-free membrane preparation.  相似文献   

5.
A membrane fraction has been prepared by sucrose density gradient fractionation of purified cortical secretory vesicles from the eggs of the sea urchin Strongylocentrotus purpuratus. The purified cortical vesicle membrane fraction has a phospholipid to protein ratio of 1.76 and exhibits a morphology typical of biological membranes as seen by electron microscopy. The protein composition of the purified membranes was analyzed by SDS-polyacrylamide gel electrophoresis and shown to be distinct from that of eggs, cell surface complex, cortical vesicles, fertilization product, and yolk platelets. Alkaline extraction (pH 11.0) of peripheral membrane proteins increased the phospholipid to protein ratio to 2.55 and removed several polypeptides. Immunoblot analysis of the isolated cortical vesicle membrane fraction revealed low levels of contamination with two major cortical vesicle content proteins. Fractions enriched in egg plasma membranes and yolk platelet membranes also have been isolated and compared with the cortical vesicle membranes by SDS-polyacrylamide gel electrophoresis. The protein compositions of the three membrane fractions were found to contain very little overlap, indicating that the cortical vesicle membrane preparation is relatively free of contamination from these likely noncortical vesicle sources of membrane. Both the plasma membrane and cortical vesicle membrane samples were found by immunoblotting to contain actin.  相似文献   

6.
The binding of the major water-soluble lens protein alpha-crystallin to the lens plasma membrane has been investigated by reassociating purified alpha-crystallin with alpha-crystallin-depleted membranes and with phospholipid vesicles in which the lens membrane protein MP26 had been reconstituted. alpha-Crystallin reassociates at high affinity (Kd = 13 X 10(-8)M) with alkali-washed lens plasma membranes but not with lens plasma membranes treated with guanidine/HCl, nor with phospholipid vesicles or erythrocyte membranes. Binding to lens plasma membranes is dependent on salt, temperature and pH and occurs in a saturable manner. Reconstitution of MP26 into phospholipid vesicles and subsequent analysis of alpha-crystallin binding suggests the involvement of this transmembrane protein. Binding ist not influenced by pretreatment of membranes with proteases, suggesting that the 4-kDa cytoplasmic fragment of MP26 is not necessary for alpha-crystallin binding. Labeling experiments using (trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine as a probe for intrinsic membrane proteins further showed that alpha-crystallin contains hydrophobic regions on its surface which might enable this protein to make contact with the lipid bilayer. Newly synthesized alpha-crystallin, in lens culture, is not associated with the plasma membrane, suggesting that the assembly of alpha-crystallin aggregates does not take place in a membrane-bound mode.  相似文献   

7.
The plasma membranes of many animal cells can be disrupted into small sealed vesicles that can be purified centrifugally and utilized for studies on membrane transport. The vesicles behave as micro-osmometers. However, the presence of charges fixed at the internal and external surfaces of the membrane walls produce pH levels at these surfaces that deviate considerably from bulk pH. Transverse symmetry of charge distribution further leads to transverse asymmetry of surface pH. Finally, charges fixed at the internal membrane surface produced significant Donnan osmotic effects that depend upon membrane composition and ionic environment.  相似文献   

8.
Effects of ionic strength and temperature on the interaction between Tb3+ and porcine intestinal brush-border membrane vesicles were studied. When Tb3+ was added to the vesicle suspension, Tb3+ fluorescence increased with increasing concentration of Tb3+, showing a saturation. The apparent dissociation constant of one of at least two components of this binding reaction was estimated to be about 12.5 microM at 25 degrees C, pH 7.4. But the affinity of Tb3+ for the membrane vesicles was variable with changes of ionic strength and temperature. The affinity was lowered by addition of KCl to medium and by increase of temperature above 30 degrees C. In addition, temperature-induced change in the affinity of Tb3+ for the membranes was reversible over a temperature range from 13 to 46 degrees C. Temperature-dependence profiles of the excimer formation efficiency of pyrene-labeled membranes and of the harmonic mean of the rotational relaxation times of pyrene molecules in the membranes revealed that the phase transition of the membrane lipids occurs at about 30 degrees C. Based on these results, characteristics of Tb3+ binding to the membranes are discussed in relation to the nature of lipid phase and surface charges of the membranes.  相似文献   

9.
Proper cell communication within the ovarian follicle is critical for the growth and maturation of a healthy oocyte that can be fertilized and develop into an embryo. Cell communication within the follicle involves many signaling molecules and is affected by maternal age. Recent studies indicate that cell communication can be mediated through secretion and uptake of small membrane-enclosed vesicles. The goals of this study were to 1) identify cell-secreted vesicles (microvesicles and exosomes) containing miRNAs and proteins within ovarian follicular fluid and 2) determine if miRNA level differs in exosomes isolated from follicular fluid in young compared to old mares. We demonstrate the presence of vesicles resembling microvesicles and exosomes in ovarian follicular fluid using transmission electron microscopy and CD63-positive and RNA containing vesicles using flow cytometry. Moreover, proteomics analysis reveals that follicular fluid-isolated exosomes contain both known exosomal proteins and proteins not previously reported in isolated exosomes. MicroRNAs were detected in microvesicle and exosomes preparations isolated from follicular fluid by real-time PCR analysis. Uptake of fluorescent-labeled microvesicles by granulosa cells was examined using in vitro and in vivo approaches. MicroRNA expression profiling reveals that miRNAs in microvesicle and exosome preparations isolated from follicular fluid also are present within surrounding granulosa and cumulus cells. These studies revealed that cell communication within the mammalian ovarian follicle may involve transfer of bioactive material by microvesicles and exosomes. Finally, miRNAs present in exosomes from ovarian follicular fluid varied with the age of the mare, and a number of different miRNAs were detected in young vs. old mare follicular fluid.  相似文献   

10.
In a series of attempts to reveal plasma heparin, we found that high ionic strength and modification of protein amino groups were not effective in extracting endogenous heparin (or, indeed, a large percentage of exogenous labelled heparin), whereas delipidation in the presence of 4M-guanidinium chloride gave high yields, indicating that plasma heparin may be assembled with compounds other than proteins, in a form making it inaccessible to water and ions. During the extraction of lipids, a paradoxical entry of heparin into the organic phase was observed. Detergents, including sodium dodecyl sulphate, did not shift heparin into the aqueous phase, whereas repeated chloroform/methanol extraction did so. Using purified compounds we were able to reproduce in vitro both the scavenging of heparin from water as well as the formation of heparin-phosphatidylcholine complexes soluble in organic solvents. Evidence for complexing of heparin with phosphatidylcholine was also obtained by electrophoretic and ultracentrifugation assays. The quaternary-ammonium-containing phosphatidylcholine was the more effective phospholipid in binding heparin; anionic phospholipids did not bind. Only heparin-like glycosaminoglycans bound phosphatidylcholine, but less-sulphated compounds (heparan sulphate and dermatan sulphate) were weaker ligands. Gel-filtration experiments showed that heparin was not bound to liposome vesicles, but that a measurable percentage of the phospholipids was stripped off from vesicles and was found in the form of a complex separable from liposomes by gel filtration. The molecular basis as well as the biological role of the interaction of heparin with major membrane phospholipids are discussed.  相似文献   

11.
A specific association between spectrin and the inner surface of the human erythrocyte membrane has been examined by measuring the binding of purified [32P]spectrin to inside out, spectrin-depleted vesicles and to right side out ghost vesicles. Spectrin was labeled by incubating erythrocytes with 32Pi, and eluted from the ghost membranes by extraction in 0.3 mM NaPO4, pH 7.6. [32P]Spectrin was separated from actin and other proteins and isolated in a nonaggregated state as a So20,w = 7 S (in 0.3 mM NaPO4) or So20,w = 8 S (in 20 mM KCl, 0.3 mM NaPO4) protein after sedimentation on linear sucrose gradients. Binding of [32P]spectrin to inverted vesicles devoid of spectrin and actin was at least 10-fold greater than to right side out membranes, and exhibited different properties. Association with inside out vesicles was slow, was decreased to the value for right side out vesicles at high pH, or after heating spectrin above 50 degrees prior to assay, and was saturable with increasing levels of spectrin. Binding to everted vesicles was rapid, unaffected by pH or by heating spectrin, and rose linearly with the concentration of spectrin. Scatchard plots of binding to inverted vesicles were linear at pH 7.6, with a KD of 45 microng/ml, while at pH 6.6, plots were curvilinear and consistent with two types of interactions with a KD of 4 and 19 microng/ml, respectively. The maximal binding capacity at both pH values was about 200 microng of spectrin/mg of membrane protein. Unlabeled spectrin competed for binding with 50% displacement at 27 microng/ml. [32P]Spectrin dissociated and associated with inverted vesicles with an identical dependence on ionic strength as observed for elution of native spectrin from ghosts. MgCl2, CaCl2 (1 to 4 mM) and EDTA (0.5 to 1 mM) had little effect on binding in the presence of 20 mM KCl, while at low ionic strength, MgCl2 (1 mM) increased binding and inhibited dissociation to the same extent as 10 to 20 mM KCl. Binding was abolished by pretreatment of vesicles with 0.1 M acetic acid, or with 0.1 microng/ml of trypsin. The periodic acid-Schiff-staining bands were unaffected by trypsin digestion which destroyed binding; mild digestion, which decreased binding only 50%, converted Band 3 almost completely to a membrane-bound 50,000-dalton fragment resistant to further proteolysis. These experiments suggest that attachment of spectrin to the cytoplasmic surface of the membrane results from a selective protein-protein interaction which is independent of erythrocyte actin. A direct role of the major sialoglycoprotein or Band 3 as a membrane binding site appears unlikely.  相似文献   

12.
The interaction of amphotericin B with isolated human erythrocyte ghosts was monitored by circular dichroism at 37 degrees C and 15 degrees C. Although different, these spectra were not concentration dependent over a concentration range covering the inducement of K+ leakage and hemolysis, which suggests the existence of only one bound amphotericin B species. At 15 degrees C, the spectra indicate that amphotericin B is complexed with membrane cholesterol; the complex formation is saturable but not cooperative. At 37 degrees C new spectra are observed, and their existence is conditioned by the presence of membrane proteins. The binding is cooperative but not saturable. The amphotericin B right side-out vesicles complexation is temperature as well as ionic strength dependent: at high ionic strength it is the same as with ghosts, with the same temperature dependence. At low ionic strength it is characteristic of an interaction with cholesterol, regardless of temperature. In the large unilamellar vesicles reconstituted from the total lipid extracts of erythrocyte membranes, amphotericin B is complexed with cholesterol, regardless of temperature and ionic strength. These results indicate that there are two different modes of amphotericin B complexation with erythrocyte membranes, reversible one in the other, depending on the molecular organization of the membrane and the presence of membrane proteins.  相似文献   

13.
Detergent extracts of isolated rat liver plasma membranes were analysed in two-dimensional immunoelectrophoresis against antiserum to plasma membranes. Enzyme staining of the immunoprecipitates revealed the presence of about ten antigens with nucleoside di- and triphosphatase activity. Most of these were earlier shown also to be NADH-neotetrazolium reductase active. In addition, two of these antigens exhibited L-leucyl-beta-naphthylamidase activity. As judged from autoradiography these plasma membrane antigens earlier characterized as multienzyme complexes bound [14C]epinephrine, and the same antigens were labelled regardless of whether membranes or membrane extracts were incubated with the radioactive hormone. The specificity of this binding was established in displacement experiments with unlabelled hormones or their analogues. Another hormone-binding antigen, also identified in the plasma membrane extract did not exhibit any known enzyme activity while three antigens with different enzyme activities had no epinephrine-binding capacity. [14C]Epinephrine-labelled plasma membrane extracts were chromatographed on Sepharose 4B and the fractions obtained were analysed in two-dimensional immunoelectrophoresis combined with autoradiography. Nucleoside di- and triphosphatases of high molecular weights (5000000) were associated with L-leucyl-beta-naphthylamidase activity, while no such associations were detected in a lower molecular weight region (70000). Further immunological studies on the various fractionated antigens provided evidence that at least two of them occurred in both low and high molecular weight fractions. Hormone-binding membrane components in varying concentrations were found throughout the eluted extract.  相似文献   

14.
The insertion of soluble proteins into membranes has been a topic of considerable interest. We have studied the insertion of bovineα-lactalbumin into single-bilayer vesicles prepared from egg phosphatidylcholine (PC). Fluoresence studies indicated rapid and tight binding of apo-α-lactalbumin (apo-α-LA) to PC vesicles as a function of pH. The binding was maximal at pH values which favor the formation of the molten globule state. As an increase of hydrophobic surface is observed in the molten globule state, this conformational state can provide a molecular basis for insertion of soluble proteins into membranes. The membrane-bound complex formed at low pH (3.0) could be isolated and was found to be stable at neutral pH. The structural characterization of the apo-α-LA-PC complex was studied by fluorescence quenching using iodide, acrylamide, and 9,10-dibromostearic acid. The results obtained indicated that some of the tryptophans of apo-α-LA were buried in the membrane interior and some were exposed on the outer side. Fluorescence quenching and CD studies indicated the membrane-bound conformation of apo-α-LA was some conformational state that is between the soluble, fully folded conformation and the molten globule state.  相似文献   

15.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calcium-induced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy: and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

16.
p-Aminobenzoic acid (PABA) was found to prevent eichinocytosis of red cells in vitro. Equilibrium binding studies with right-side-out membrane vesicles revealed a similar number of binding sites and Kd values for both normal and sickle cell membranes. A [14C]Azide analog of PABA was synthesized as a photoaffinity label to probe its sites of interaction on the erythrocyte membranes. Competitive binding studies of PABA with its azide indicated that both the compounds share common binding sites on the membrane surface. The azide was found to covalently incorporate into the membrane components upon irradiation; 52-35% of the label was associated with the proteins and the remaining with the lipids. Electrophoretic analysis of photolabeled membranes revealed that the azide interacts mainly with Band 3 protein in the case of intact erythrocytes and right-side-out sealed vesicles; however, if unsealed ghosts are used, other membrane proteins besides Band 3 are photolabeled. PABA was found to inhibit both high and low affinity calcium-binding sites situated on either surface of the membrane apparently in a non-competitive manner. However, calcium binding stimulated by magnesium and ATP was only slightly affected. Calcium transport into inside-out vesicles was inhibited by PABA, but it did not affect the calcium ATPase activity.  相似文献   

17.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calciuminduced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy; and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

18.
《The Journal of cell biology》1987,105(6):2589-2601
The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes.  相似文献   

19.
Alpha-crystallin, a large lenticular protein complex made up of two related subunits (alphaA- and alphaB-crystallin), is known to associate increasingly with fiber cell plasma membranes with age and/or the onset of cataract. To understand better the binding mechanism, we developed a sensitive membrane binding assay using lens plasma membranes and recombinant human alphaA- and alphaB-crystallins conjugated to a small fluorescent tag (Alexa350). Both alphaA and alphaB homopolymer complexes, as well as a reconstituted 3:1 heteromeric complex, bind to lens membranes in a specific, saturable, and partially irreversible manner that is sensitive to both time and temperature. The amount of alpha-crystallin that binds to the membrane increases under acidic pH conditions and upon removal of exposed intrinsic membrane protein domains but is not affected at high ionic strength, suggesting that alpha-crystallin binds to the fiber cell plasma membranes mainly through hydrophobic interactions. The binding capacity and affinity for the reconstituted 3:1 heteromeric complex were measured to be 3. 45 +/- 0.11 ng/microg of membrane and 4.57 +/- 0.50 x 10(-4) microg(-1) of membrane, respectively. The present membrane binding data support the hypothesis that the physical properties of a mixed alpha-crystallin complex may hold particular relevance for the function of alpha-crystallin within the lens.  相似文献   

20.
Summary A simple and rapid method of isolating plasma membranes from human peripheral lung tissue is described. The method involves homogenization of tissue in 0.25m sucrose-buffered medium followed by differential and sucrose density gradient centrifugation. Enzymatic and morphological characterization of the plasma membrane fraction revealed minimal contamination by nonplasma membrane fragments. The isolated plasma membranes showed an 18-fold purification of 5-nucleotidase activity compared to the original homogenate. Electronmicroscopic studies of the plasma membrane fraction revealed the presence of small membrane vesicles having a trilaminar membrane structure. To further examine the purity of the plasma membrane preparation, the binding of the H1 receptor antagonist,3H pyrilamine, to the plasma membrane-enriched fraction was compared to the binding to crude membrane preparations. Both the plasma membrane-enriched fraction and the crude membrane preparation had similar Kd's for the histamine antagonist, but the plasma membrane-enriched fraction had a threefold greater binding capacity, reflecting the relative enrichment of plasma membranes of the preparation. Thus, a method has been developed for the isolation of plasma membranes from human peripheral lung which should provide material for a variety of biochemical and pharmacological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号