首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Vasodilator actions of insulin are mediated by signaling pathways involving phosphatidylinositol 3-kinase (PI 3-kinase) and Akt that lead to activation of endothelial nitric oxide synthase (eNOS) in endothelium. Signaling molecules immediately upstream and downstream from PI 3-kinase involved with production of NO in response to insulin have not been previously identified. In this study, we evaluated roles of insulin receptor substrate 1 (IRS-1) and phosphoinositide-dependent kinase 1 (PDK-1) in production of NO. The fluorescent dye 4,5-diamine fluorescein diacetate was used to directly measure NO in NIH-3T3(IR) cells transiently cotransfected with eNOS and various IRS-1 or PDK-1 constructs. In control cells, transfected with only eNOS, insulin stimulated a rapid dose-dependent increase in NO. Overexpression of wild-type IRS-1 increased the maximal insulin response 3-fold. Overexpression of IRS1-F6 (mutant that does not bind PI 3-kinase) or an antisense ribozyme against IRS-1 substantially inhibited insulin-stimulated production of NO. Likewise, overexpression of wild-type PDK-1 enhanced insulin-stimulated production of NO, whereas a kinase-inactive mutant PDK-1 inhibited this action of insulin. Qualitatively similar results were observed in vascular endothelial cells. Production of NO by a calcium-dependent mechanism in response to lysophosphatidic acid was unaffected by either wild-type or mutant IRS-1 and PDK-1. We conclude that IRS-1 and PDK-1 play necessary roles in insulin-signaling pathways leading to activation of eNOS. Furthermore, classical Ca2+-mediated pathways for activation of eNOS are separable from IRS-1- and PDK-1-dependent insulin-signaling pathways.  相似文献   

2.
Recent studies from our laboratory have shown that insulin stimulates myosin-bound phosphatase (MBP) in vascular smooth muscle cells (VSMCs) by decreasing site-specific phosphorylation of the myosin-bound subunit (MBS) of MBP via nitric oxide/cGMP-mediated Rho/Rho kinase inactivation. Here we tested potential interactions between Rho kinase and insulin signaling pathways. In control VSMCs, insulin inactivates ROK-alpha, the major Rho kinase isoform in VSMCs, and inhibits thrombin-induced increase in ROK-alpha association with the insulin receptor substrate-1 (IRS-1). Hypertension (in spontaneous hypertensive rats) or expression of an active RhoA(V14) up-regulates Rho kinase activity and increases ROK-alpha/IRS-1 association resulting in IRS-1 serine phosphorylation that leads to inhibition of both insulin-induced IRS-1 tyrosine phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activation. In contrast, expression of dominant negative RhoA or cGMP-dependent protein kinase type I alpha inactivates Rho kinase, abolishes ROK-alpha/IRS-1 association, and potentiates insulin-induced tyrosine phosphorylation and PI3-kinase activation leading to decreased MBS(T695) phosphorylation and decreased MBP inhibition. Collectively, these results suggest a novel function for ROK-alpha in insulin signal transduction at the level of IRS-1 and potential cross-talk between cGMP-dependent protein kinase type I alpha, Rho/Rho kinase signaling, and insulin signaling at the level of IRS-1/PI3-kinase.  相似文献   

3.
Alpha-synuclein (α-Syn) is a major component of Lewy bodies, a pathological feature of Parkinson's and other neurodegenerative diseases collectively known as synucleinopathies. Among the possible mechanisms of α-Syn-mediated neurotoxicity is interference with cytoprotective pathways such as insulin signaling. Insulin receptor substrate (IRS)-1 is a docking protein linking IRs to downstream signaling pathways such as phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K)1; the latter exerts negative feedback control on insulin signaling, which is impaired in Alzheimer's disease. Our previous study found that α-Syn overexpression can inhibit protein phosphatase (PP)2A activity, which is involved in the protective mechanism of insulin signaling. In this study, we found an increase in IRS-1 phosphorylation at Ser636 and decrease in tyrosine phosphorylation, which accelerated IRS-1 turnover and reduced insulin-Akt signaling in α-Syn-overexpressing SK-N-SH cells and transgenic mice. The mTOR complex (C)1/S6K1 blocker rapamycin inhibited the phosphorylation of IRS-1 at Ser636 in cells overexpressing α-Syn, suggesting that mTORC1/S6K1 activation by α-Syn causes feedback inhibition of insulin signaling via suppression of IRS-1 function. α-Syn overexpression also inhibited PP2A activity, while the PP2A agonist C2 ceramide suppressed both S6K1 activation and IRS-1 Ser636 phosphorylation upon α-Syn overexpression. Thus, α-Syn overexpression negatively regulated IRS-1 via mTORC1/S6K1 signaling while activation of PP2A reverses this process. These results provide evidence for a link between α-Syn and IRS-1 that may represent a novel mechanism for α-Syn-associated pathogenesis.  相似文献   

4.
Incubation of cells with insulin leads to a transient rise in Tyr phosphorylation of insulin receptor substrate (IRS) proteins, accompanied by elevation in their Ser(P)/Thr(P) content and their dissociation from the insulin receptor (IR). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, selectively prevented the increase in Ser(P)/Thr(P) content of IRS-1, its dissociation from IR, and the decrease in its Tyr(P) content following 60 min of insulin treatment. Four conserved phosphorylation sites within the phosphotyrosine binding/SAIN domains of IRS-1 and IRS-2 served as in vitro substrates for protein kinase B (PKB), a Ser/Thr kinase downstream of phosphatidylinositol 3-kinase. Furthermore, PKB and IRS-1 formed stable complexes in vivo, and overexpression of PKB enhanced Ser phosphorylation of IRS-1. Overexpression of PKB did not affect the acute Tyr phosphorylation of IRS-1; however, it significantly attenuated its rate of Tyr dephosphorylation following 60 min of treatment with insulin. Accordingly, overexpression of IRS-1(4A), lacking the four potential PKB phosphorylation sites, markedly enhanced the rate of Tyr dephosphorylation of IRS-1, while inclusion of vanadate reversed this effect. These results implicate a wortmannin-sensitive Ser/Thr kinase, different from PKB, as the kinase that phosphorylates IRS-1 and acts as the feedback control regulator that turns off insulin signals by inducting the dissociation of IRS proteins from IR. In contrast, insulin-stimulated PKB-mediated phosphorylation of Ser residues within the phosphotyrosine binding/SAIN domain of IRS-1 protects IRS-1 from the rapid action of protein-tyrosine phosphatases and enables it to maintain its Tyr-phosphorylated active conformation. These findings implicate PKB as a positive regulator of IRS-1 functions.  相似文献   

5.
Morphine induces desensitization of insulin receptor signaling   总被引:4,自引:0,他引:4       下载免费PDF全文
Morphine analgesia is mediated principally by the micro -opioid receptor (MOR). Since morphine and other opiates have been shown to influence glucose homeostasis, we investigated the hypothesis of direct cross talk between the MOR and the insulin receptor (IR) signaling cascades. We show that prolonged morphine exposure of cell lines expressing endogenous or transfected MOR, IR, and the insulin substrate 1 (IRS-1) protein specifically desensitizes IR signaling to Akt and ERK cascades. Morphine caused serine phosphorylation of the IR and impaired the formation of the signaling complex among the IR, Shc, and Grb2. Morphine also resulted in IRS-1 phosphorylation at serine 612 and reduced tyrosine phosphorylation at the YMXM p85-binding motifs, weakening the association of the IRS-1/p85 phosphatidylinositol 3-kinase complex. However, the IRS-1/Grb2 complex was unaffected by chronic morphine treatment. These results suggest that morphine attenuates IR signaling to Akt by disrupting the IRS-1-p85 interaction but inhibits signaling to ERK by disruption of the complex among the IR, Shc, and Grb2. Finally, we show that systemic morphine induced IRS-1 phosphorylation at Ser612 in the hypothalamus and hippocampus of wild type, but not MOR knockout, mice. Our results demonstrate that opiates can inhibit insulin signaling through direct cross talk between the downstream signaling pathways of the MOR and the IR.  相似文献   

6.
In response to insulin, tyrosine kinase activity of the insulin receptor is stimulated, leading to autophosphorylation and tyrosine phosphorylation of proteins including insulin receptor subunit (IRS)-1, IRS-2, and Shc. Phosphorylation of these proteins leads to activation of downstream events that mediate insulin action. Insulin receptor kinase activity is requisite for the biological effects of insulin, and understanding regulation of insulin receptor phosphorylation and kinase activity is essential to understanding insulin action. Receptor tyrosine kinase activity may be altered by direct changes in tyrosine kinase activity, itself, or by dephosphorylation of the insulin receptor by protein-tyrosine phosphatases. After 1 min of insulin stimulation, the insulin receptor was tyrosine phosphorylated 8-fold more and Shc was phosphorylated 50% less in 32D cells containing both IRS-1 and insulin receptors (32D/IR+IRS-1) than in 32D cells containing only insulin receptors (32D/IR), insulin receptors and IRS-2 (32D/IR+IRS-2), or insulin receptors and a form of IRS-1 that cannot be phosphorylated on tyrosine residues (32D/IR+IRS-1F18). Therefore, IRS-1 and IRS-2 appeared to have different effects on insulin receptor phosphorylation and downstream signaling. Preincubation of cells with pervanadate greatly decreased protein-tyrosine phosphatase activity in all four cell lines. After pervanadate treatment, tyrosine phosphorylation of insulin receptors in insulin-treated 32D/IR, 32D/ IR+IRS-2, and 32D/IR+IRS-1F18 cells was markedly increased, but pervanadate had no effect on insulin receptor phosphorylation in 32D/IR+IRS-1 cells. The presence of tyrosine-phosphorylated IRS-1 appears to increase insulin receptor tyrosine phosphorylation and potentially tyrosine kinase activity via inhibition of protein-tyrosine phosphatase(s). This effect of IRS-1 on insulin receptor phosphorylation is unique to IRS-1, as IRS-2 had no effect on insulin receptor tyrosine phosphorylation. Therefore, IRS-1 and IRS-2 appear to function differently in their effects on signaling downstream of the insulin receptor. IRS-1 may play a major role in regulating insulin receptor phosphorylation and enhancing downstream signaling after insulin stimulation.  相似文献   

7.
Ser/Thr phosphorylation of insulin receptor substrate-1 (IRS-1) is a negative regulator of insulin signaling. One potential mechanism for this is that Ser/Thr phosphorylation decreases the ability of IRS-1 to be tyrosine-phosphorylated by the insulin receptor. An additional mechanism for modulating insulin signaling is via the down-regulation of IRS-1 protein levels. Insulin-induced degradation of IRS-1 has been well documented, both in cells as well as in patients with diabetes. Ser/Thr phosphorylation of IRS-1 correlates with IRS-1 degradation, yet the details of how this occurs are still unknown. In the present study we have examined the potential role of different signaling cascades in the insulin-induced degradation of IRS-1. First, we found that inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin block the degradation. Second, knockout cells lacking one of the key effectors of this cascade, the phosphoinositide-dependent kinase-1, were found to be deficient in the insulin-stimulated degradation of IRS-1. Conversely, overexpression of this enzyme potentiated insulin-stimulated IRS-1 degradation. Third, concurrent with the decrease in IRS-1 degradation, the inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin also blocked the insulin-stimulated increase in Ser(312) phosphorylation. Most important, an IRS-1 mutant in which Ser(312) was changed to alanine was found to be resistant to insulin-stimulated IRS-1 degradation. Finally, an inhibitor of c-Jun N-terminal kinase, SP600125, at 10 microm did not block IRS-1 degradation and IRS-1 Ser(312) phosphorylation yet completely blocked insulin-stimulated c-Jun phosphorylation. Further, insulin-stimulated c-Jun phosphorylation was not blocked by inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin, indicating that c-Jun N-terminal kinase is unlikely to be the kinase phosphorylating IRS-1 Ser(312) in response to insulin. In summary, our results indicate that the insulin-stimulated degradation of IRS-1 via the phosphatidylinositol 3-kinase pathway is in part dependent upon the Ser(312) phosphorylation of IRS-1.  相似文献   

8.
Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.  相似文献   

9.
Annexin II is secreted into the extracellular environment, where, via interactions with specific proteases and extracellular matrix proteins, it participates in plasminogen activation, cell adhesion, and tumor metastasis and invasion. However, mechanisms regulating annexin II transport across the cellular membrane are unknown. In this study, we used coimmunoprecipitation to show that Annexin-II was bound to insulin and insulin-like growth factor-1 (IGF-1) receptors in PC12 cells and NIH-3T3 cells overexpressing insulin (NIH-3T3(IR)) or IGF-1 receptor (NIH-3T3(IGF-1R)). Stimulation of insulin and IGF-1 receptors by insulin caused a temporary dissociation of annexin II from these receptors, which was accompanied by an increased amount of extracellular annexin II detected in the media of PC12, NIH-3T3(IR), and NIH-3T3(IGF-1R) cells but not in that of untransfected NIH-3T3 cells. Activation of a different growth factor receptor, the platelet-derived growth factor receptor, did not produce such results. Tyrphostin AG1024, a tyrosine kinase inhibitor of insulin and IGF-1 receptor, was shown to inhibit annexin II secretion along with reduced receptor phosphorylation. Inhibitors of a few downstream signaling enzymes including phosphatidylinositol 3-kinase, pp60c-Src, and protein kinase C had no effect on insulin-induced annexin II secretion, suggesting a possible direct link between receptor activation and annexin II secretion. Immunocytochemistry revealed that insulin also induced transport of the membrane-bound form of annexin II to the outside layer of the cell membrane and appeared to promote cell aggregation. These results suggest that the insulin receptor and its signaling pathways may participate in molecular mechanisms mediating annexin II secretion.  相似文献   

10.
The ability of the growth factors epidermal growth factor (EGF), transforming growth factor alpha, and platelet-derived growth factor to exert insulin-like effects on glucose transport and lipolysis were examined in human and rat fat cells. No effects were found in rat fat cells, whereas EGF (EC(50) for glucose transport approximately 0.02 nm) and transforming growth factor alpha (EC(50) approximately 0.2 nm), but not platelet-derived growth factor, mimicked the effects of insulin (EC(50) approximately 0.2 nm) on both pathways. EGF receptors, but not EGF, were abundantly expressed in human fat cells as well as in human skeletal muscle. EGF increased the tyrosine phosphorylation of several proteins (the EGF receptor, insulin receptor substrate (IRS)-1, IRS-2, and Grb2-associated binder 1), whereas Shc and Gab2 were only weakly and inconsistently phosphorylated. p85, the regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase), was also found to associate with all of these docking molecules, showing that EGF activated PI 3-kinase pools that were additional to those of insulin. EGF and/or insulin increased protein kinase B/Akt serine phosphorylation to a similar extent, whereas mitogen-activated protein kinase phosphorylation was more pronounced for EGF than for insulin. The impaired insulin-stimulated downstream signaling, measured as protein kinase B/Akt serine phosphorylation, in insulin-resistant cells (Type 2 diabetes) was improved by the addition of EGF. Thus, EGF receptors, but not EGF, are abundantly expressed in human fat cells and skeletal muscle. EGF mimics the effects of insulin on both the metabolic and mitogenic pathways but utilize in part different signaling pathways. Both insulin and EGF increase the tyrosine phosphorylation and activation of IRS-1 and IRS-2, whereas EGF is also capable of activating additional PI 3-kinase pools and, thus, can augment the downstream signaling of insulin in insulin-resistant states like Type 2 diabetes.  相似文献   

11.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene transfer technique, and we analyzed the effect of overexpression of a wild-type protein-tyrosine phosphatase-1B (PTP1B) on insulin signaling in both L6 myocytes and Fao cells. In both cells, PTP1B overexpression blocked insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1 by more than 70% and resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase and Akt phosphorylation as well as mitogen-activated protein kinase phosphorylation. Moreover, insulin-stimulated glycogen synthesis was also inhibited by PTP1B overexpression in both cells. These effects were specific for insulin signaling, because platelet-derived growth factor (PDGF)-stimulated PDGF receptor tyrosine phosphorylation and Akt phosphorylation were not inhibited by PTP1B overexpression. The present findings demonstrate that PTP1B negatively regulates insulin signaling in L6 and Fao cells, suggesting that PTP1B plays an important role in insulin resistance in muscle and liver.  相似文献   

12.
Inflammation contributes to insulin resistance in diabetes and obesity. Mouse Pelle-like kinase (mPLK, homolog of human IL-1 receptor-associated kinase (IRAK)) participates in inflammatory signaling. We evaluated IRS-1 as a novel substrate for mPLK that may contribute to linking inflammation with insulin resistance. Wild-type mPLK, but not a kinase-inactive mutant (mPLK-KD), directly phosphorylated full-length IRS-1 in vitro. This in vitro phosphorylation was increased when mPLK was immunoprecipitated from tumor necrosis factor (TNF)-alpha-treated cells. In NIH-3T3(IR) cells, wild-type mPLK (but not mPLK-KD) co-immunoprecipitated with IRS-1. This association was increased by treatment of cells with TNF-alpha. Using mass spectrometry, we identified Ser(24) in the pleckstrin homology (PH) domain of IRS-1 as a specific phosphorylation site for mPLK. IRS-1 mutants S24D or S24E (mimicking phosphorylation at Ser(24)) had impaired ability to associate with insulin receptors resulting in diminished tyrosine phosphorylation of IRS-1 and impaired ability of IRS-1 to bind and activate PI-3 kinase in response to insulin. IRS-1-S24D also had an impaired ability to mediate insulin-stimulated translocation of GLUT4 in rat adipose cells. Importantly, endogenous mPLK/IRAK was activated in response to TNF-alpha or interleukin 1 treatment of primary adipose cells. In addition, using a phospho-specific antibody against IRS-1 phosphorylated at Ser(24), we found that interleukin-1 or TNF-alpha treatment of Fao cells stimulated increased phosphorylation of endogenous IRS-1 at Ser(24). We conclude that IRS-1 is a novel physiological substrate for mPLK. TNF-alpha-regulated phosphorylation at Ser(24) in the pleckstrin homology domain of IRS-1 by mPLK/IRAK represents an additional mechanism for cross-talk between inflammatory signaling and insulin signaling that may contribute to metabolic insulin resistance.  相似文献   

13.
Insulin receptor substrate-1 (IRS-1) is a major substrate of the insulin receptor and acts as a docking protein for Src homology 2 domain containing signaling molecules that mediate many of the pleiotropic actions of insulin. Insulin stimulation elicits serine/threonine phosphorylation of IRS-1, which produces a mobility shift on SDS-PAGE, followed by degradation of IRS-1 after prolonged stimulation. We investigated the molecular mechanisms and the functional consequences of these phenomena in 3T3-L1 adipocytes. PI 3-kinase inhibitors or rapamycin, but not the MEK inhibitor, blocked both the insulin-induced electrophoretic mobility shift and degradation of IRS-1. Adenovirus-mediated expression of a membrane-targeted form of the p110 subunit of phosphatidylinositol (PI) 3-kinase (p110CAAX) induced a mobility shift and degradation of IRS-1, both of which were inhibited by rapamycin. Lactacystin, a specific proteasome inhibitor, inhibited insulin-induced degradation of IRS-1 without any effect on its electrophoretic mobility. Inhibition of the mobility shift did not significantly affect tyrosine phosphorylation of IRS-1 or downstream insulin signaling. In contrast, blockade of IRS-1 degradation resulted in sustained activation of Akt, p70 S6 kinase, and mitogen-activated protein (MAP) kinase during prolonged insulin treatment. These results indicate that insulin-induced serine/threonine phosphorylation and degradation of IRS-1 are mediated by a rapamycin-sensitive pathway, which is downstream of PI 3-kinase and independent of ras/MAP kinase. The pathway leads to degradation of IRS-1 by the proteasome, which plays a major role in down-regulation of certain insulin actions during prolonged stimulation.  相似文献   

14.
Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.  相似文献   

15.
Insulin rapidly stimulates protein synthesis in a wide variety of tissues. This stimulation is associated with phosphorylation of several translational initiation and elongation factors, but little is known about the signaling pathways to these events. To study these pathways, we have used a myeloid progenitor cell line (32D) which is dependent on interleukin 3 but insensitive to insulin because of the very low levels of insulin receptor (IR) and the complete lack of insulin receptor substrate (IRS)-signaling proteins (IRS-1 and IRS-2). Expression of more IR permits partial stimulation of mitogen-activated protein kinase by insulin, and expression of IRS-1 alone mediates insulin stimulation of the 70-kDa S6 kinase (pp70S6K) by the endogenous IR. However, expression of both IR and IRS-1 is required for stimulation of protein synthesis. Moreover, this effect requires activation of phosphatidylinositol 3-kinase (PI3K), as determined by wortmannin inhibition and the use of an IRS-1 variant lacking all Tyr residues except those which activate PI3K. Stimulation of general protein synthesis does not involve activation by IRS-1 of GRB-2-SOS-p21ras or SH-PTP2, since IRS-1 variants lacking the SH2-binding Tyr residues for these proteins are fully active. Nor does it involve pp70S6K, since rapamycin, while strongly inhibiting the synthesis of a small subset of growth-regulated proteins, only slightly inhibits total protein synthesis. Recruitment of mRNAs to the ribosome is enhanced by phosphorylation of eIF4E, the cap-binding protein, and PHAS-I, a protein that specifically binds eIF4E. The behavior of cell lines containing IRS-1 variants and inhibition by wortmannin and rapamycin indicate that the phosphorylation of both proteins requires IRS-1-mediated stimulation of PI3K and pp70S6K but not mitogen-activated protein kinase or SH-PTP2.  相似文献   

16.
Insulin and insulin-like growth factor I signals are mediated via phosphorylation of a family of insulin receptor substrate (IRS) proteins, which may serve both complementary and overlapping functions in the cell. To study the metabolic effects of these proteins in more detail, we established brown adipocyte cell lines from wild type and various IRS knockout (KO) animals and characterized insulin action in these cells in vitro. Preadipocytes derived from both wild type and IRS-2 KO mice could be fully differentiated into mature brown adipocytes. In differentiated IRS-2 KO adipocytes, insulin-induced glucose uptake was decreased by 50% compared with their wild type counterparts. This was the result of a decrease in insulin-stimulated Glut4 translocation to the plasma membrane. This decrease in insulin-induced glucose uptake could be partially reconstituted in these cells by retrovirus-mediated re-expression of IRS-2, but not overexpression of IRS-1. Insulin signaling studies revealed a total loss of IRS-2-associated phosphatidylinositol (PI) 3-kinase activity and a reduction in phosphotyrosine-associated PI 3-kinase by 30% (p < 0.05) in the KO cells. The phosphorylation and activity of Akt, a major downstream effector of PI 3-kinase, as well as Akt-dependent phosphorylation of glycogen synthase kinase-3 and p70S6 kinase were not affected by the lack of IRS-2; however, there was a decrease in insulin stimulation of Akt associated with the plasma membrane. These results provide evidence for a critical role of IRS-2 as a mediator of insulin-stimulated Glut4 translocation and glucose uptake in adipocytes. This occurs without effects in differentiation, total activation of Akt and its downstream effectors, but may be caused by alterations in compartmentalization of these downstream signals.  相似文献   

17.
Insulin receptor substrate (IRS) proteins are tyrosine phosphorylated and mediate multiple signals during activation of the receptors for insulin, insulin-like growth factor 1 (IGF-1), and various cytokines. In order to distinguish common and unique functions of IRS-1, IRS-2, and IRS-4, we expressed them individually in 32D myeloid progenitor cells containing the human insulin receptor (32D(IR)). Insulin promoted the association of Grb-2 with IRS-1 and IRS-4, whereas IRS-2 weakly bound Grb-2; consequently, IRS-1 and IRS-4 enhanced insulin-stimulated mitogen-activated protein kinase activity. During insulin stimulation, IRS-1 and IRS-2 strongly bound p85alpha/beta, which activated phosphatidylinositol (PI) 3-kinase, protein kinase B (PKB)/Akt, and p70(s6k), and promoted the phosphorylation of BAD. IRS-4 also promoted the activation of PKB/Akt and BAD phosphorylation during insulin stimulation; however, it weakly bound or activated p85-associated PI 3-kinase and failed to mediate the activation of p70(s6k). Insulin strongly inhibited apoptosis of interleukin-3 (IL-3)-deprived 32D(IR) cells expressing IRS-1 or IRS-2 but failed to inhibit apoptosis of cells expressing IRS-4. Consequently, 32D(IR) cells expressing IRS-4 proliferated slowly during insulin stimulation. Thus, the activation of PKB/Akt and BAD phosphorylation might not be sufficient to inhibit the apoptosis of IL-3-deprived 32D(IR) cells unless p85-associated PI 3-kinase or p70(s6k) are strongly activated.  相似文献   

18.
Insulin stimulation produced a reliable 3-fold increase in glucose uptake in primary neonatal rat myotubes, which was accompanied by a similar effect on GLUT4 translocation to plasma membrane. Tumor necrosis factor (TNF)-alpha caused insulin resistance on glucose uptake and GLUT4 translocation by impairing insulin stimulation of insulin receptor (IR) and IR substrate (IRS)-1 and IRS-2 tyrosine phosphorylation, IRS-associated phosphatidylinositol 3-kinase activation, and Akt phosphorylation. Because this cytokine produced sustained activation of stress and proinflammatory kinases, we have explored the hypothesis that insulin resistance by TNF-alpha could be mediated by these pathways. In this study we demonstrate that pretreatment with PD169316 or SB203580, inhibitors of p38 MAPK, restored insulin signaling and normalized insulin-induced glucose uptake in the presence of TNF-alpha. However, in the presence of PD98059 or SP600125, inhibitors of p42/p44 MAPK or JNK, respectively, insulin resistance by TNF-alpha was still produced. Moreover, TNF-alpha produced inhibitor kappaB kinase (IKK)-beta activation and inhibitor kappaB-beta and -alpha degradation in a p38 MAPK-dependent manner, and treatment with salicylate (an inhibitor of IKK) completely restored insulin signaling. Furthermore, TNF-alpha produced serine phosphorylation of IR and IRS-1 (total and on Ser(307) residue), and these effects were completely precluded by pretreatment with either PD169316 or salicylate. Consequently, TNF-alpha, through activation of p38 MAPK and IKK, produces serine phosphorylation of IR and IRS-1, impairing its tyrosine phosphorylation by insulin and the corresponding activation of phosphatidylinositol 3-kinase and Akt, leading to insulin resistance on glucose uptake and GLUT4 translocation.  相似文献   

19.
Insulin receptor substrate-1 (IRS-1) is a key protein in the insulin-like growth factor (IGF) signaling whose tyrosine phosphorylation by the type 1 IGF receptor is necessary for the recruitment and activation of the downstream effectors. Through the analysis of cross-talks occurring between different tyrosine kinase receptor-dependent signaling pathways, we investigated how two growth factors [epidermal growth factor (EGF) and fibroblast growth factor (FGF)] could modulate the IGF-I-induced IRS-1 tyrosine phosphorylation and its downstream signaling. EGF and FGF inhibited IGF-I-stimulated tyrosine phosphorylation of IRS-1 and the subsequent IGF-I-induced phosphatidylinositol 3-kinase (PI 3-kinase) activity. These EGF- and FGF-inhibitory effects were dependent on both PI 3-kinase and protein kinase D1 (PKD1) signaling pathways but independent on the extracellular signal-regulated kinase (ERK) pathway. PKD1, which was activated independently of the PI 3-kinase pathway, associated with IRS-1 in response to EGF or FGF. Unlike PI 3-kinase, PKD1 did not mediate the EGF- or FGF-induced-IRS-1 serine 307 phosphorylation which was described to inhibit IRS-1. Interestingly, specific inhibition of either PI 3-kinase or PKD1 totally impaired EGF- or FGF-induced inhibition of IGF-I-stimulated IRS-1 tyrosine phosphorylation. This indicated that serine 307 phosphorylation of IRS-1 is not sufficient per se to inhibit the IGF signaling pathway and demonstrated for the first time that the negative regulation of IRS-1 requires the coordinated action of PI 3-kinase and PKD1. This further suggests that PKD1 may be an attractive target for innovative strategies that target the IGF signaling pathway.  相似文献   

20.
Activity of the sympathetic nervous system is an important factor involved in the pathogenesis of insulin resistance and associated metabolic and vascular abnormalities. In this study, we investigate the molecular basis of cross-talk between beta(3)-adrenergic and insulin signaling systems in mouse brown adipocytes immortalized by SV40 T infection. Insulin-induced tyrosine phosphorylation of the insulin receptor, insulin receptor substrate 1 (IRS-1), and IRS-2 was reduced by prestimulation of beta(3)-adrenergic receptors (CL316243). Similarly, insulin-induced IRS-1-associated and phosphotyrosine-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity, but not IRS-2-associated PI 3-kinase activity, was reduced by beta(3)-adrenergic prestimulation. Furthermore, insulin-stimulated activation of Akt, but not mitogen-activated protein kinase, was diminished. Insulin-induced glucose uptake was completely inhibited by beta(3)-adrenergic prestimulation. These effects appear to be protein kinase A-dependent. Furthermore inhibition of protein kinase C restored the beta(3)-receptor-mediated reductions in insulin-induced IRS-1 tyrosine phosphorylation and IRS-1-associated PI 3-kinase activity. Together, these findings indicate cross-talk between adrenergic and insulin signaling pathways. This interaction is protein kinase A-dependent and, at least in part, protein kinase C-dependent, and could play an important role in the pathogenesis of insulin resistance associated with sympathetic overactivity and regulation of brown fat metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号