共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A. I. Glukhov Y. E. Grigorieva S. A. Gordeev A. Z. Vinarov N. V. Potoldykova 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2014,8(1):59-68
In order to develop noninvasive diagnostics of bladder cancer (BC), telomerase activity has been examined by means the TRAP method (telomerase repeat amplification protocol) in tumor tissue and urine pellet samples taken from patients with bladder cancer. The levels of relative expression of genes encoding telomerase catalytic subunit (hTERT) and its RNA subunit (hTR) were evaluated by RT-PCR. Telomerase activity and expression of genes encoding its subunits were detected in both tumor tissues and in the urine cell pellet from each BC patient. Results of our study demonstrate possibility of noninvasive BC diagnostics using combination of these methods with sensitivity of 96% and specificity of 100% in the case of telomerase detection and with sensitivity of 80% and specificity of 100% in the case of hTERT detection in urine pellet samples. 相似文献
4.
Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity 总被引:9,自引:0,他引:9
Telomerase activity is dependent on the expression of 2 main core component genes, hTERT, which encodes the catalytic component and hTR (also called TERC), which encodes the RNA component. The correlation between telomerase activity and carcinogenesis has made this molecule of great interest in cancer research, however in order to fully understand the regulation of telomerase the mechanisms controlling both telomerase genes need to be studied. Some of these mechanisms of regulation have begun to emerge, however many more remain to be deciphered. For many years hTERT has been regarded as the limiting component of telomerase and much of the research in this field has focussed on its regulation, however it was clear from an early stage that hTR expression was also tightly regulated in normal cells and disease. More recently evidence from biochemistry, promoter studies and mouse models has been steadily increasing for a role for hTR as a limiting and essential component for telomerase activity and telomere maintenance. Perhaps the time has come to redefine our view of telomerase regulation. Knowledge of the mechanisms controlling both telomerase genes in normal systems and cancer may aid our understanding of the role of telomerase in carcinogenesis or highlight potential areas for therapeutic intervention. Here we review the essential requirement of hTR for telomere maintenance and telomerase activity in normal tissues and disease and focus on recent advances in our understanding of hTR regulation in relation to hTERT. 相似文献
5.
6.
Soohoo CY Shi R Lee TH Huang P Lu KP Zhou XZ 《The Journal of biological chemistry》2011,286(5):3894-3906
Telomere maintenance is essential for protecting chromosome ends. Aberrations in telomere length have been implicated in cancer and aging. Telomere elongation by human telomerase is inhibited in cis by the telomeric protein TRF1 and its associated proteins. However, the link between TRF1 and inhibition of telomerase elongation of telomeres remains elusive because TRF1 has no direct effect on telomerase activity. We have previously identified one Pin2/TRF1-interacting protein, PinX1, that has the unique property of directly binding and inhibiting telomerase catalytic activity (Zhou, X. Z., and Lu, K. P. (2001) Cell 107, 347-359). However, nothing is known about the role of the PinX1-TRF1 interaction in the regulation of telomere maintenance. By identifying functional domains and key amino acid residues in PinX1 and TRF1 responsible for the PinX1-TRF1 interaction, we show that the TRF homology domain of TRF1 interacts with a minimal 20-amino acid sequence of PinX1 via hydrophilic and hydrophobic interactions. Significantly, either disrupting this interaction by mutating the critical Leu-291 residue in PinX1 or knocking down endogenous TRF1 by RNAi abolishes the ability of PinX1 to localize to telomeres and to inhibit telomere elongation in cells even though neither has any effect on telomerase activity per se. Thus, the telomerase inhibitor PinX1 is recruited to telomeres by TRF1 and provides a critical link between TRF1 and telomerase inhibition to prevent telomere elongation and help maintain telomere homeostasis. 相似文献
7.
目的:原核表达人Pin2/TRF1结合蛋白X1(PinX1),确定该蛋白与人端粒酶逆转录酶(hTERT)催化亚基的相互作用。方法:用PCR方法从乳腺文库中扩增PinX1基因的编码序列,克隆至pET-32a载体构建重组质粒pHis-PinX1,经双酶切鉴定后转化大肠杆菌BL21并进行诱导表达,SDS-PAGE和Western印迹检测His-PinX1的表达;用His磁珠纯化His-PinX1,在人肾胚细胞293T内检测His-PinX1与hTERT的相互作用。结果:扩增得到980bp的PinX1基因;Western印迹检测表明,相对分子质量约57x10。的His-PinX1获得表达,且纯化的His-PinX1与hTERT具有相互作用。结论:表达并纯化得到了与hTERT相互作用的His-PinX1,为深入研究PinX1的功能奠定了基础。 相似文献
8.
Telomerase recruitment to telomere is the prerequisite for telomere extension, but the proteins involved in this process are still largely unknown. PinX1 is a telomerase inhibitor and has been implicated in telomere maintenance. Silencing of PinX1 significantly reduced the localization of telomerase to telomere during mid-late S phase, suggesting the involvement of PinX1 in the cell cycle-dependent trafficking of hTERT to telomere. We also revealed that PinX1 mediated the chromosomal localization of hTERT during anaphase. This study revealed the role of PinX1 in telomerase function regulation by mediating its localization inside cells. 相似文献
9.
10.
11.
12.
Saied Hosseini-Asl Morteza Atri Mohammad H Modarressi Mohamed Salhab Kefah Mokbel Parvin Mehdipour 《International Seminars in Surgical Oncology : ISSO》2006,3(1):20
Background
Telomerase is a ribonucleoprotein enzyme that synthesises telomeres after cell division and maintains chromosomal stability leading to cellular immortalization. Telomerase has been associated with negative prognostic indicators in some studies. The present study aims to detect any association between telomerase sub-units: hTERT and hTR and the prognostic indicators including tumour's size and grade, nodal status and patient's age.Methods
Tumour samples from 46 patients with primary invasive breast cancer and 3 patients with benign tumours were collected. RT-PCR analysis was used for the detection of hTR, hTERT, and PGM1 (as a housekeeping) genes expression.Results
The expression of hTR and hTERT was found in 31(67.4%) and 38 (82.6%) samples respectively. We observed a significant association between hTR gene expression and younger age at diagnosis (p = 0.019) when comparing patients ≤ 40 years with those who are older than 40 years. None of the benign tumours expressed hTR gene. However, the expression of hTERT gene was revealed in 2 samples.No significant association between hTR and hTERT expression and tumour's grade, stage and nodal status was seen.Conclusion
The expression of hTR and hTERT seems to be independent of tumour's stage. hTR expression probably plays a greater role in mammary tumourogenesis in younger women (≤ 40 years) and this may have therapeutic implications in the context of hTR targeting strategies.13.
Nishi H Nakada T Kyo S Inoue M Shay JW Isaka K 《Molecular and cellular biology》2004,24(13):6076-6083
Hypoxia occurs during the development of the placenta in the first trimester and correlates with both trophoblast differentiation and the induction of telomerase activity through hTERT expression. We sought to determine the mechanism of regulation of hTERT expression during hypoxia. We show that hypoxia-inducible factor 1alpha (HIF-1alpha) and hTERT expression in the human placenta decrease with gestational age and that these are overexpressed in preeclamptic placenta, a major complication of pregnancy. Hypoxia not only transactivates the hTERT promoter activity but also enhances endogenous hTERT expression. The hTERT promoter region between -165 and +51 contains two HIF-1 consensus motifs, and in vitro reporter assays show that these are essential for hTERT transactivation by HIF-1. Introduction of an antisense oligonucleotide for HIF-1 diminishes hTERT expression during hypoxia, indicating that upregulation of hTERT by hypoxia is directly mediated through HIF-1. Our results provide persuasive evidence that the regulation of hTERT promoter activity by HIF-1 represents a mechanism for trophoblast growth during hypoxia and suggests that this may be a generalized response to hypoxia in various human disorders including resistance to cancer therapeutics by upregulating telomerase. 相似文献
14.
15.
16.
17.
Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex 总被引:4,自引:1,他引:4
The eukaryotic ribonuclease for mitochondrial RNA processing (RNase MRP) is mainly located in the nucleoli and belongs to the small nucleolar ribonucleoprotein (snoRNP) particles. RNase MRP is involved in the processing of pre-rRNA and the generation of RNA primers for mitochondrial DNA replication. A closely related snoRNP, which shares protein subunits with RNase MRP and contains a structurally related RNA subunit, is the pre-tRNA processing factor RNase P. Up to now, 10 protein subunits of these complexes have been described, designated hPop1, hPop4, hPop5, Rpp14, Rpp20, Rpp21, Rpp25, Rpp30, Rpp38 and Rpp40. To get more insight into the assembly of the human RNase MRP complex we studied protein–protein and protein–RNA interactions by means of GST pull-down experiments. A total of 19 direct protein–protein and six direct protein–RNA interactions were observed. The analysis of mutant RNase MRP RNAs showed that distinct regions are involved in the direct interaction with protein subunits. The results provide insight into the way the protein and RNA subunits assemble into a ribonucleoprotein particle. Based upon these data a new model for the architecture of the human RNase MRP complex was generated. 相似文献
18.
Guoyuan Chen 《Biochemical and biophysical research communications》2010,398(4):683-689
LPTS/PinX1, a telomerase inhibitor composed of 328 amino acids, binds to the telomere associated protein Pin2/TRF1 and to the telomerase catalytic subunit hTERT. However, the mechanism by which LPTS/PinX1 regulates telomerase activity remains unclear. Here we show, for the first time, that LPTS/PinX1 uses different domains to interact with Pin2/TRF1 and hTERT. The LPTS/PinX1254-289 fragment specifically binds to Pin2/TRF1, and LPTS/PinX1290-328 can associate with hTERT. Compared with the full-length LPTS/PinX1 protein, LPTS/PinX1290-328 shows stronger in vitro telomerase inhibitory activity. Moreover, the LPTS/PinX1 protein was recruited to telomeres for binding to Pin2/TRF1. Overexpression of LPTS/PinX1290-328, which contains a nucleolus localization signal, in cells resulted in telomere shortening and progressive cell death. Conversely, telomere elongation was induced by expression of the dominant-negative LPTS/PinX11-289. Our results suggest that the C-terminal fragment of LPTS/PinX1 (LPTS/PinX1290-328) contains a telomerase inhibitory domain that is required for the inhibition of telomere elongation and the induction of cell crisis. Our studies also provide evidence that LPTS/PinX1 interaction with Pin2/TRF1 may play a role in the stabilization of telomeres. 相似文献
19.
Telomerase activity is critical for normal and transformed human cells to escape from crisis and is implicated in oncogenesis. Here we describe a novel Pin2/TRF1 binding protein, PinX1 that inhibits telomerase activity and affects tumorigenicity. PinX1 and its small TID domain bind the telomerase catalytic subunit hTERT and potently inhibit its activity. Overexpression of PinX1 or its TID domain inhibits telomerase activity, shortens telomeres, and induces crisis, whereas depletion of endogenous PinX1 increases telomerase activity and elongates telomeres. Depletion of PinX1 also increases tumorigenicity in nude mice, consistent with its chromosome localization at 8p23, a region with frequent loss of heterozygosity in a number of human cancers. Thus, PinX1 is a potent telomerase inhibitor and a putative tumor suppressor. 相似文献
20.