首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The diketo acid L-708,906 has been reported to be a selective inhibitor of the strand transfer step of the human immunodeficiency virus type 1 (HIV-1) integration process (D. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and M. D. Miller, Science 287:646-650, 2000). We have now studied the development of antiviral resistance to L-708,906 by growing HIV-1 strains in the presence of increasing concentrations of the compound. The mutations T66I, L74M, and S230R emerged successively in the integrase gene. The virus with three mutations (T66I L74M S230R) was 10-fold less susceptible to L-708,906, while displaying the sensitivity of the wild-type virus to inhibitors of the RT or PRO or viral entry process. Chimeric HIV-1 strains containing the mutant integrase genes displayed the same resistance profile as the in vitro-selected strains, corroborating the impact of the reported mutations on the resistance phenotype. Phenotypic cross-resistance to S-1360, a diketo analogue in clinical trials, was observed for all strains. Interestingly, the diketo acid-resistant strain remained fully sensitive to V-165, a novel integrase inhibitor (C. Pannecouque, W. Pluymers, B. Van Maele, V. Tetz, P. Cherepanov, E. De Clercq, M. Witvrouw, and Z. Debyser, Curr. Biol. 12:1169-1177, 2002). Antiviral resistance was also studied at the level of recombinant integrase. Single mutations did not appear to impair specific enzymatic activity. However, 3' processing and strand transfer activities of the recombinant integrases with two (T66I L74M) and three (T66I L74M S230R) mutations were notably lower than those of the wild-type integrase. Although the virus with three mutations was resistant to inhibition by diketo acids, the sensitivity of the corresponding enzyme to L-708,906 or S-1360 was reduced only two- to threefold. As to the replication kinetics of the selected strains, the replication fitness for all strains was lower than that of the wild-type HIV-1 strain.  相似文献   

4.
5.
6.
7.
8.
I型人类免疫缺陷病毒(human immunodeflciency virustype1,HIV-1)在宿主细胞内经逆转录得到的cDNA,由整合酶(integrase,ry)催化插入到宿主基因组DNA中,该过程称为整合过程。整合是HIV-1复制周期中不可缺少的步骤,对于病毒的复制至关重要,因此对整合酶的抑制能够有效地起到抗HIV的作用。该文综述了整合酶的结构与功能以及目前关于整合酶抑制剂的最新研究进展。  相似文献   

9.
Recently, we have demonstrated that T30695, a G-tetrad-forming oligonucleotide, is a potent inhibitor of human immunodeficiency virus, type I (HIV-1) integrase and the K(+)-induced loop folding of T30695 plays a key role in the inhibition of HIV-1 integrase (Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). Here we have modified T30695 by introducing a hydrophobic bulky group, propynyl dU, or a positively charged group, 5-amino dU, into the bases of T residues of the loops, and by substitution of the T-G loops by T-T loops. Physical measurements have demonstrated that the substitution of propynyl dU or 5-amino dU for T in the T residues of the loops did not alter the structure of T30695, and these derivatives also formed an intramolecular G-quartet structure, which is an essential requirement for anti-HIV activity. Measured IC(50) and EC(50) values show that these substitutions did not induce an apparent decrease in the ability to inhibit HIV-1 integrase activity and in the inhibition of HIV-1 replication in cell culture. However, the substitution of T-T loops for T-G loops induced a substantial decrease in both thermal stability and anti-HIV activity. The data analysis of T30695 and the 21 derivatives shows a significant, functional correlation between thermal stability of the G-tetrad structure and the capacity to inhibit HIV-1 integrase activity and between thermal stability of the G-tetrad structure and the capacity to inhibit HIV-1 replication, as assessed with the virus strains HIV-1 RF, IIIB, and MN in cell culture. This relationship between thermostability and activity provides a basis for improving the efficacy of these compounds to inhibit HIV-1 integrase activity and HIV-1 replication in cell culture.  相似文献   

10.
11.
12.
13.
14.
Retroviral replication requires the integration of reverse-transcribed viral cDNA into a cell chromosome. A key barrier to forming the integrated provirus is the nuclear envelope, and numerous regions in human immunodeficiency virus type 1 (HIV-1) have been shown to aid the nuclear localization of viral preintegration complexes (PICs) in infected cells. One region in integrase (IN), composed of Val-165 and Arg-166, was reportedly essential for HIV-1 replication and nuclear localization in all cell types. In this study we confirmed that HIV-1(V165A) and HIV-1(R166A) were replication defective and that less mutant viral cDNA localized to infected cell nuclei. However, we present three lines of evidence that argue against a specific role for Val-165 and Arg-166 in PIC nuclear import. First, results of transient transfections revealed that V165A FLAG-tagged IN and green fluorescent protein-IN fusions carrying either V165A or R166A predominantly localized to cell nuclei. Second, two different strains of previously described class II IN mutant viruses displayed similar nuclear entry profiles to those observed for HIV-1(V165A) and HIV-1(R166A), suggesting that defective nuclear import may be a common phenotype of replication-defective IN mutant viruses. Third, V165A and R166A mutants were defective for in vitro integration activity, when assayed both as PICs isolated from infected T-cells and as recombinant IN proteins purified from Escherichia coli. Based on these results, we conclude that HIV-1(V165A) and HIV-1(R166A) are pleiotropic mutants primarily defective for IN catalysis and that Val-165 and Arg-166 do not play a specific role in the nuclear localization of HIV-1 PICs in infected cells.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells productively because the nuclear import of viral nucleic acids occurs in the absence of cell division. A number of viral factors that are present in HIV-1 preintegration complexes (PICs) have been assigned functions in nuclear import, including an essential valine at position 165 in integrase (IN-V165) and the central polypurine tract (cPPT). In this article, we report a comparison of the replication and infection characteristics of viruses with disruptions in the cPPT and IN-V165. We found that viruses with cPPT mutations still replicated productively in both dividing and nondividing cells, while viruses with a mutation at IN-V165 did not. Direct observation of the subcellular localization of HIV-1 cDNAs by fluorescence in situ hybridization revealed that cDNAs synthesized by both mutant viruses were readily detected in the nucleus. Thus, neither the cPPT nor the valine residue at position 165 of integrase is essential for the nuclear import of HIV-1 PICs.  相似文献   

16.
17.
18.
A series of 10-hydroxy-7,8-dihydropyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-1,9(2H,6H)-diones was synthesized and tested for their inhibition of HIV-1 replication in cell culture. Structure-activity studies indicated that high antiviral potency against wild-type virus as well as viruses containing integrase mutations that confer resistance to three different structural classes of integrase inhibitors could be achieved by incorporation of small aliphatic groups at certain positions on the core template. An optimal compound from this study, 16, inhibits integrase strand-transfer activity with an IC(50) value of 10 nM, inhibits HIV-1 replication in cell culture with an IC(95) value of 35 nM in the presence of 50% normal human serum, and displays modest pharmacokinetic properties in rats (i.v. t(1/2)=5.3 h, F=17%).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号