首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cultured human endothelial cells synthesize and secrete two types of plasminogen activator, tissue plasminogen activator (t-PA) and urokinase (u-PA). Previous work from this laboratory (Hajjar, K.A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest. 80, 1712-1719) has demonstrated dose-dependent, saturable, and high affinity binding of t-PA to two sites associated with cultural endothelial cell monolayers. We now report that an isolated plasma membrane-enriched endothelial cell fraction specifically binds 125I-t-PA at a single saturable site (Kd 9.1 nM; Bmax 3.1 pmol/mg membrane protein). Ligand blotting experiments demonstrated that both single and double-chain t-PA specifically bound to a Mr 40,000 membrane protein present in detergent extracts of isolated membranes, while high molecular weight, low molecular weight, and single-chain u-PA associated with a Mr 48,000 protein. Both binding interactions were reversible and cell-specific and were inhibitable by pretreatment of intact cells with nanomolar concentrations of trypsin. The relevant binding proteins were not found in subendothelial cell matrix, failed to react with antibodies to plasminogen activator inhibitor type 1 and interacted with their respective ligands in an active site-independent manner. The isolated t-PA binding site was resistant to reduction and preserved the capacity for plasmin generation. In contrast, the isolated u-PA binding protein was sensitive to reduction, and did not maintain the catalytic activity of the ligand on the blot. The results suggest that in addition to sharing a matrix-associated binding site (plasminogen activator inhibitor type 1), both t-PA and u-PA have unique membrane binding sites which may regulate their function. The results also provide further support for the hypothesis that plasminogen and t-PA can assemble on the endothelial cell surface in a manner which enhances cell surface generation of plasmin.  相似文献   

2.
A hybrid human cDNA was constructed by splicing of a cDNA fragment of tissue-type plasminogen activator (t-PA), encoding 5'-untranslated, the pre-pro region and amino acids Ser1-Thr263, with a cDNA fragment of urokinase-type plasminogen activator (u-PA), encoding amino acids Leu144-Leu411. The cDNA fragments were obtained from full length t-PA cDNA, cloned from Bowes melanoma poly(A)+ mRNA, and from full length u-PA cDNA, cloned from CALU-3 lung adenocarcinoma poly(A)+ mRNA. The hybrid (t-PA/u-PA) cDNA was expressed in Chinese hamster ovary cells and the translation product purified from the conditioned cell culture media. On SDS-gel electrophoresis under reducing conditions, the protein migrated as a single band with approximate Mr 70,000. On immunoblotting, it reacted both with rabbit antisera raised against human t-PA and against human u-PA. The urokinase-like amidolytic activity of the protein was only 320 IU/mg but increased to 43,000 IU/mg after treatment with plasmin, which resulted in conversion of the single-chain molecule (t-PA/scu-PA) to a two-chain molecule (t-PA/tcu-PA). The specific activity of the protein on fibrin plates was 57,000 IU/mg by comparison with the International Reference Preparation for Urokinase. Both the single-chain hybrid (t-PA/scu-PA) and the two-chain plasmin derivative (t-PA/tcu-PA) bound specifically to fibrin, albeit more weakly than t-PA. The t-PA/tcu-PA hybrid had a higher selectivity for fibrin than tcu-PA, measured in a system composed of a whole human 125I-fibrin-labeled plasma clot immersed in human plasma. Both hybrid proteins activated plasminogen directly with Km = 1.5 microM and k2 = 0.0058 s-1 for t-PA/scu-PA and with Km = 80 microM and k2 = 5.6 s-1 for t-PA/tcu-PA. CNBr-digested fibrinogen stimulated the activation of plasminogen with t-PA/tcu-PA (Km = 0.20 microM and k2 = 1.2 s-1). It is concluded that these t-PA/u-PA hybrid proteins combine, at least to some extent, the fibrin-affinity of t-PA with the enzymatic properties of u-PA (either scu-PA or tcu-PA), which in some assays result in improved fibrin-mediated plasminogen activation.  相似文献   

3.
Positioned at the boundary between intra- and extravascular compartments, endothelial cells may influence many processes through their production of plasminogen activators (PA). Available data have shown that tissue-type plasminogen activator (t-PA) is the major form produced by human endothelial cells. We have compared the molecular forms of PA produced by human endothelial cells from different microvascular and large vessel sources including two different sites within the circulation of the kidney. Using combined immunoactivity assays specific for u-PA and t-PA activity and antigen, we found that both human renal microvascular and renal artery endothelial cells produced high levels of u-PA antigen (60.48 ng/10(5) cells/24 h and 50.42 ng/10(5) cells/24 h, respectively) and corresponding levels of u-PA activity after activation with plasmin. Activity was not evident before plasmin activation, showing that the u-PA produced is almost exclusively as single chain form U-PA. In contrast, human omental microvascular endothelial cells and human umbilical vein endothelial cells produced exclusively t-PA (8.80 ng/10(5) cells/24 h and 2.17 ng/10(5) cells/24 h, respectively). Neither endothelial cell type from human kidney produced plasminogen activator inhibitor, as determined by reverse fibrin autography and titration assays. Agents including phorbol ester, thrombin, and dexamethasone were shown to regulate the renal endothelial cell production and mRNA expression of both u-PA and t-PA. Among the macro- and microvascular endothelial cells tested, only those from the renal circulation produced high levels of single chain form U-PA, suggesting the vascular bed of origin determines the expression of plasminogen activators.  相似文献   

4.
Several human melanoma cell lines produced tissue-type plasminogen activator (t-PA), as detected by zymography and immunocapture assay of culture media and cell lysates. Urokinase (u-PA) was found at only less than or equal to 1% the level of t-PA. Acid eluates of the cell surface indicated that the melanoma cells had t-PA bound on their surface, but no u-PA, and also had a very low capacity to bind exogenous u-PA. After incubation of the melanoma cells with 10% plasminogen-depleted fetal calf serum and human plasminogen, bound plasmin activity could be eluted from the cell surface with tranexamic acid, an analogue of lysine. This indicated that plasminogen was activated on the cell surface. The cell-surface plasmin formation was inhibited by an anti-catalytic monoclonal antibody to human t-PA, and not by an anti-catalytic antibody to u-PA. The melanoma cells also synthesized and secreted alpha 2-macroglobulin (alpha 2M), as shown by alpha 2M-specific mRNA in Northern blotting and detection of alpha 2M protein in conditioned cell culture media. The media were found to inhibit u-PA but not t-PA. This inhibition was related to their alpha 2M content, and immunoabsorption of alpha 2M removed the inhibitory activity. These studies suggest that t-PA can bind to the surface of melanoma cells and generate surface-bound plasmin. Because t-PA and cell-bound plasmin are unaffected by alpha 2M, t-PA may, in the case of melanoma cells, serve an analogous function to u-PA in supporting tumor cell invasion.  相似文献   

5.
Mutant urokinase-type plasminogen activator (u-PA) genes and hybrid genes between tissue-type plasminogen activator (t-PA) and u-PA have been designed to direct the synthesis of new plasminogen activators and to investigate the structure-function relationship in these molecules. The following classes of constructs were made starting from cDNA encoding human t-PA or u-PA: 1) u-PA mutants in which the Arg156 and Lys158 were substituted with threonine, thus preventing cleavage by thrombin and plasmin; 2) hybrid molecules in which the NH2-terminal regions of t-PA (amino acid residues 1-67, 1-262, or 1-313) were fused with the COOH-terminal region of u-PA (amino acids 136-411, 139-411, or 195-411, respectively); and 3) a hybrid molecule in which the second kringle of t-PA (amino acids 173-262) was inserted between amino acids 130 and 139 of u-PA. In all cases but one, the recombinant proteins, produced by transfected eukaryotic cells, were efficiently secreted in the culture medium. The translation products have been tested for their ability to activate plasminogen after in situ binding to an insolubilized monoclonal antibody directed against urokinase. All recombinant enzymes were shown to be active, except those in which Lys158 of u-PA was substituted with threonine. Recombination of structural regions derived from t-PA, such as the finger, the kringle 2, or most of the A-chain sequences, with the protease part or the complete u-PA molecule did not impair the catalytic activity of the hybrid polypeptides. This observation supports the hypothesis that structural domains in t-PA and u-PA fold independently from one to another.  相似文献   

6.
The activity of tissue plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) is stimulated by heparin. Heparin binds tightly to t-PA, u-PA, and plasminogen and decreases the usual stimulatory effect of fibrin on t-PA activity. In the present study we have found that low molecular weight heparin (LMW-heparin) preparations obtained by nitrous acid depolymerization or heparinase treatment of standard heparin have different properties with respect to their interaction with the fibrinolytic system. LMW-heparin prepared by either method does not stimulate plasmin formation by t-PA. However, these preparations of heparin still efficiently accelerate the inhibition of thrombin by antithrombin III. Binding data show that LMW-heparin does not bind t-PA and Glu-plasminogen and only binds very weakly to Lys-plasminogen. These results illustrate that it is possible to selectively destroy the fibrinolytic stimulating properties of heparin while leaving the classical anticoagulant characteristics intact.  相似文献   

7.
Tissue-type plasminogen activator in rat adrenal medulla   总被引:5,自引:0,他引:5  
Rat adrenal glands were stained immunocytochemically using antibodies against plasminogen activators of the tissue-type (t-PA) and urokinase-type (u-PA). A subpopulation of the cells in the adrenal medulla showed intense cytoplasmic t-PA immunoreactivity, while no u-PA immunoreactivity was detected in any adrenal cells. Fluorescence microscopy of adjacent sections demonstrated that the cells stained for t-PA contained noradrenaline. Analysis with a histochemical fibrin slide technique demonstrated a plasminogen-dependent fibrinolysis in the adrenal medulla. SDS-PAGE of adrenal gland extracts followed by zymography established the molecular weight of this plasminogen activator to be similar to that of rat t-PA. In addition SDS-PAGE followed by immunoblotting with anti-t-PA IgG of adrenal gland extracts revealed one band with an electrophoretic mobility indistinguishable from that found in the zymography. When tissue-sections and immunoblots were incubated with antibodies absorbed with highly purified t-PA no staining was found. In view of the previous finding of t-PA in growth hormone-containing cells of the pituitary gland, these findings substantiate that t-PA can be found in the intact normal organism outside endothelial cells, and further point to t-PA having a function in endocrine cells.  相似文献   

8.
9.
Thrombospondin (TSP) is a multifunctional platelet alpha-granule and extracellular matrix glycoprotein that binds specifically to plasminogen (Plg) via that protein's lysine-binding site and modulates activation by tissue activator (TPA). In this study we report that the plasminogen activators, TPA and urokinase, greatly influence the binding of Plg to TSP. Using an enzyme-linked immunosorbent assay and a TSP-Sepharose affinity bead-binding assay we have found that Plg-TSP complex formation was markedly enhanced (up to 5-fold) when catalytic concentrations of Plg activators were included in the reaction mixtures. The enhancement was dependent upon the generation of small amounts of active plasmin and was duplicated by pretreatment of the immobilized TSP with plasmin prior to addition of the Plg. The enhancement effect was associated with selective proteolysis of the immobilized TSP. Purified Lys-Plg (the plasmin modified form of native Glu-Plg) bound to TSP to a greater extent than Glu-Plg, and binding of both forms was augmented by Plg activators. The apparent KD values of complex formation were unchanged in the presence of Plg activators suggesting that the enhancement effect was due to the generation of additional binding sites. The increased amount of bound Plg was demonstrated to result in a similar increase in the amount of plasmin generated from the complexes by TPA. Plg activators did not influence binding of Plg to histidine-rich glycoprotein or of histidine-rich glycoprotein to TSP, demonstrating specificity. In addition when TSP was treated with other proteases (human thrombin or human leukocyte elastase) no augmentation of Plg binding was seen. Thus, the initial production of small amounts of plasmin from Plg immobilized on TSP in fibrin-free microenvironments could generate a positive feedback loop by enzymatically modifying both TSP and Plg, resulting in an increase in TSP-Plg complex formation leading to the localized production of substantially more plasmin.  相似文献   

10.
Serum-free conditioned media and cell extracts from cultured human umbilical vein endothelial cells were analyzed for plasminogen activator by SDS-polyacrylamide gel electrophoresis and enzymography on fibrin-indicator gels. Active bands of free and complexed tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA) were identified by the incorporation of specific antibodies against, respectively, t-PA or u-PA in the indicator gel. The endothelial cells predominantly released a high-molecular-weight t-PA (95000–135000). This t-PA form was converted to Mr-72000 t-PA by 1.5 M NH4OH/39 mM SDS. A component with high affinity for both t-PA and u-PA could be demonstrated in serum-free conditioned medium and endothelial cell extract. The complex between this component and Mr-72000 t-PA comigrated with high-molecular-weight t-PA. From the increase in Mr of t-PA or u-PA upon complex formation, the Mr of the endothelial cell component was estimated to be 50000–70000. The reaction between t-PA or u-PA and the plasminogen activator-binding component was blocked by 5 mM p-aminobenzamidine, while the complexes, once formed, could be cleaved by 1.5 M NH4OH/39 mM SDS. These observations indicated that the active center of plasminogen activator was involed in the complex formation. It was further noted that serum-free conditioned medium of endothelial cell extract inhibited plasminogen activator activity when assayed by the fibrin-plate method. Evidence is provided that the plasminogen activator-binding component was different from a number of the known plasma serine proteinase inhibitors, the placenta inhibitor and the fibroblast surface protein, proteinase-nexin. We conclude that cultured endothelial cells produce a rapid inhibitor of u-PA and t-PA as well as a t-PA-inhibitor complex.  相似文献   

11.
Tissue plasminogen activator (t-PA) is an extracellular serine protease that converts the proenzyme plasminogen into the broad-spectrum substrate serine protease, plasmin. Plasmin, one of the most potent pro-angiogenic factors, is a key element in fibrinolysis, cell migration, tissue remodeling and tumor invasion. In the present investigation, we assessed the impact of the truncated form of soluble melanotransferrin (sMTf) on plasminogen activation by t-PA and subsequent endothelial cell detachment. Co-treatment of human endothelial microvessel cells with plasminogen, t-PA and sMTf significantly increased plasmin formation and activity in the culture medium. Plasmin generated in the presence of sMTf also led to a 30% reduction in fibronectin detection within cell lysates and to a 9-fold increase within the corresponding cell medium. Moreover, the presence of sMTf increases EC detachment by 6-fold compared to cells treated only with plasminogen and t-PA. Although the addition of alpha(2)-antiplasmin completely prevented plasmin formation and EC detachment, epigallocatechin gallate, GM6001 and a specific antibody directed against MMP-2 prevented cellular detachment without interfering with plasminogen activation. Overall, these data suggest that the anti-angiogenic properties of sMTf may result from local overstimulation of plasminogen activation by t-PA, thus leading to subsequent degradation of the Fn matrix and EC detachment.  相似文献   

12.
Plasminogen activators (PA) convert the inactive proenzyme plasminogen into plasmin, which is involved in the process of fibrinolysis, tissue remodeling, and cell migration. There are two distinct forms of PA: urokinase (u-PA) and tissue-type plasminogen activator (t-PA). t-PA has higher affinity for fibrin and is the main form involved in thrombolysis. By in situ chromosomal hybridization and Southern blot analysis of somatic cell hybrid DNA, we have assigned the human t-PA gene to chromosome 8, bands 8p12----q11.2. We have detected a common EcoRI restriction fragment length polymorphism within the t-PA gene that thus provides a precisely localized highly informative marker for genetic linkage studies. The t-PA gene localization coincides with a translocation breakpoint observed in myeloproliferative disorders. Whereas leukemic cells usually secrete both types of PA, a correlation exists between acute myeloid leukemic cells that release only t-PA and failure to respond to chemotherapy.  相似文献   

13.
Human HT-1080 fibrosarcoma cells produce urokinase-type plasminogen activator (u-PA) and type 1 plasminogen activator inhibitor (PAI-1). We found that after incubation of monolayer cultures with purified native human plasminogen in serum-containing medium, bound plasmin activity could be eluted from the cells with tranexamic acid, an analogue of lysine. The bound plasmin was the result of plasminogen activation on the cell surface; plasmin activity was not taken up onto cells after deliberate addition of plasmin to the serum-containing medium. The cell surface plasmin formation was inhibited by an anticatalytic monoclonal antibody to u-PA, indicating that this enzyme was responsible for the activation. Preincubation of the cells with diisopropyl fluorophosphate-inhibited u-PA led to a decrease in surface-bound plasmin, indicating that a large part, if not all, of the cell surface plasminogen activation was catalyzed by surface-bound u-PA. In the absence of plasminogen, most of the cell surface u-PA was present in its single-chain proenzyme form, while addition of plasminogen led to formation of cell-bound two-chain u-PA. The latter reaction was catalyzed by cell-bound plasmin. Cell-bound u-PA was accessible to inhibition by endogenous PAI-1 and by added PAI-2, while the cell-bound plasmin was inaccessible to serum inhibitors, but accessible to added aprotinin and an anticatalytic monoclonal antibody. A model for cell surface plasminogen activation is proposed in which plasminogen binding to cells from serum medium is followed by plasminogen activation by trace amounts of bound active u-PA, to form bound plasmin, which in turn serves to produce more active u-PA from bound pro-u-PA. This exponential process is subject to regulation by endogenous PAI-1 and limited to the pericellular space.  相似文献   

14.
Nerve growth factor (NGF) has previously been shown to increase the rate of adhesion of PC-12 pheochromocytoma cells to cell culture dishes. This increase in the rate of adhesion was postulated to be important in NGF-mediated neurite outgrowth. We now report that epidermal growth factor (EGF) is also able to increase the rate of adhesion of PC-12 cells to cell culture dishes, but does not elicit neurite outgrowth. The dose-response curve for EGF is bell-shaped, in contrast to the more classically shaped dose-response curve obtained with NGF. Tetradecanoyl-phorbol-acetate (TPA), a potent tumor promoter, blocks the EGF-induced increase in adhesion rate of PC-12 cells, but does not alter the NGF-induced increase in adhesion rate. TPA shifts the EGF binding curve to the right for PC-12 cells, but does not alter maximal EGF binding at saturating concentrations of EGF. The binding of NGF to PC-12 cells is not affected by TPA. NGF-induced neurite formation by PC-12 cells is unaffected by TPA, in contrast to the previously reported delay of neurite outgrowth of serum-deprived neuroblastoma cells and NGF-exposed chick embryonic ganglia cells. NGF and EGF both cause a decrease in the number of short microvilli and an increase in the number of long microvilli on PC-12 cells. TPA blocks the decrease in the number of short microvilli in EGF-treated cells, but not in NGF-treated cells. Long microvilli formation is blocked by TPA in both conditions, suggesting the latter are not involved in the increased adhesion rates.  相似文献   

15.
Epidermal growth factor (EGF) induces tubular formation of cultured human microvascular endothelial (HME) cells in the gel matrix containing collagen, and tumor necrosis factor (TNF) disrupts the tubular formation (Mawatari et al. (1989) J. Immunol. 143, 1619-1627). Here we studied the effects of EGF and TNF on endothelial cell migration and on the production of proteases. Confluent HME cells, when wounded with a razor blade, moved into the denuded space. This migration was stimulated by EGF and inhibited by TNF in this assay and in the Boyden chamber assay. Antibody against tissue-type plasminogen activator (t-PA) inhibited the EGF-stimulated cell migration in both assays by approximately 70%, but antibody against urokinase-type plasminogen activator (u-PA) could not inhibit its migration. Quantitative immunoreactive assays showed an approximately three- to fourfold increase of t-PA at 6 to 12 h after EGF addition, and TNF inhibited the production of t-PA by 50%. Northern blot analysis showed increased expression of t-PA mRNA by EGF alone in a time- and dose-dependent manner, whereas TNF alone inhibited its expression in a time- and dose-dependent manner. Northern blot analysis showed a significant increase of plasminogen activator inhibitor-1 (PAI-1) mRNA when EGF or TNF was present. Stimulation by EGF of cell migration of HME cells and its inhibition by TNF appear to be closely correlated with the cellular modulation of t-PA and PAI-1 activities.  相似文献   

16.
We constructed two human tissue-type plasminogen activator/urokinase (t-PA/u-PA) hybrid cDNAs which were expressed by transfection of mouse Ltk- cells. The properties of the secreted proteins were compared with those of recombinant t-PA (rt-PA) and high molecular weight (HMW) u-PA. The hybrid proteins each contain the amino-terminal fibrin-binding chain of t-PA fused to the carboxy-terminal serine protease moiety of u-PA but differ by a stretch of 13 amino acid residues between kringle 2 of t-PA and the plasmin cleavage site of u-PA. Hybrid protein rt-PA/u-PA I contains amino acids 1-262 of t-PA connected with amino acids 147-411 of u-PA, whereas hybrid protein rt-PA/u-PA II consists of the same t-PA segment and residues 134-411 of u-PA. We demonstrated fibrin binding for rt-PA, whereas the hybrid proteins bind to a lesser extent and HMW u-PA has no affinity for fibrin. Plasminogen activation by either one of the hybrid proteins in the absence of a fibrin substitute was similar to that by HMW u-PA, while rt-PA was much less active. The catalytic efficiency, in the presence of a fibrin substitute, increases more than 2000-fold for rt-PA, about 250-fold for hybrid proteins I and II, and 12-fold for HMW u-PA, respectively. Under these conditions the hybrid proteins are more efficient plasminogen activators than the parental ones. The hybrid molecules form a 1:1 molar complex with the human endothelial plasminogen activator inhibitor (PAI-1), analogous to that formed by rt-PA and HMW u-PA. The relative affinity of rt-PA for PAI-1 is 4.6-fold higher than that of HMW u-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Regulation of the activity of proteolytic enzymes is of major importance in the turnover of connective tissues. The search for physiologically relevant activation mechanisms of principal tissue-degrading enzymes, e.g., metalloproteinases, has therefore been of wide interest. We have now studied whether the initiating factor of the fibrinolytic system, urokinase plasminogen activator (u-PA), may also function in the early steps of activation of one of the metalloproteinases, the M(r) 72,000 gelatinase/type IV collagenase produced by cultured fibroblasts. Treatment of the secreted M(r) 72,000 proteinase by u-PA yielded a cleavage product of M(r) 62,000 as revealed by fluorography of radioactively labeled proteins as well as by gelatin zymography SDS-PAGE gels. The u-PA-catalyzed cleavage of the M(r) 72,000 proteinase was blocked by anti-u-PA antibodies, but was unaffected by the plasmin inhibitor aprotinin, thus indicating a specific action for the activator. On the contrary, the tissue activator of plasminogen, t-PA, did not cleave the type IV collagenase in similar assays. u-PA-catalyzed cleavage of recombinant type IV collagenase, produced in a baculovirus expression system, yielded a similar M(r) 62,000 activity in gelatinolysis assay. Zymograms of the isolated pericellular matrices of cultured fibroblasts also revealed M(r) 72,000 gelatinolytic polypeptide that was converted to an M(r) 62,000 form by u-PA. Both polypeptides were recognized in immunoblotting by antibodies against the gelatinase/type IV collagenase, suggesting immunological identity with the secreted enzyme. Thus the M(r) 72,000 gelatinase/type IV collagenase is not only secreted, but also deposited into the pericellular fibroblast matrix, and both forms are substrates for u-PA. The results suggest a new potential role for u-PA as a direct regulator of metalloproteinase-mediated extracellular proteolysis via the cleavage of the M(r) 72,000 gelatinase/type IV collagenase to an M(r) 62,000 form.  相似文献   

18.
U Zacharias  H Will 《FEBS letters》1991,289(2):155-158
Porcine urine, unlike human urine, does not contain detectable amounts of urokinase-type plasminogen activator (u-PA). The plasminogen activator present in porcine urine is of tissue-type (t-PA) as identified by the following criteria. (1) Porcine urine PA exhibits an Mr of 65,000 similar to the Mr of human t-PA (64-70,000) but distinct from the Mr of human u-PA (55,000). (2) Antibodies against human t-PA bind and inhibit crude and purified porcine urine PA, while human u-PA-specific antibodies do not react with porcine urine PA. (3) Plasminogen activation by porcine urine PA is markedly stimulated in the presence of fibrinogen fragments. (4) Porcine urine PA activity is not affected by concentration of amiloride substantially suppressing human u-PA activity.  相似文献   

19.
20.
Human glomerular epithelial cells (GECs) in culture synthesize single-chain, urokinase-type plasminogen activator (SC-uPA), tissue-type plasminogen activator (t-PA), and plasminogen activator inhibitor 1 (PAI-1) and possess specific membrane-binding sites for u-PA. Using purified 125I-alpha thrombin, we demonstrate here the presence of two populations of specific binding sites for thrombin on GECs (1.Kd = 4.3 +/- 1.0 x 10(-10) M, 5.4 +/- 1.4 x 10(4) M sites per cell, 2. Kd = 1.6 +/- 0.5 x 10(-8) M, 7.9 +/- 1.8 x 10(5) sites per cell). Purified human alpha thrombin promoted the proliferation of GECs and induced a time- and dose-dependent increase of SC-uPA, t-PA, and PAI-1 antigens released by GECs. Thrombin-mediated increase in antigen was paralleled by an increase in the levels of corresponding u-PA and PAI-1 messenger RNA. In contrast, thrombin decreased u-PA activity in conditioned medium. This discrepancy between u-PA antigen and u-PA activity was explained by a limited proteolysis of SC-uPA by thrombin, leading to a two-chain form detected by immunoblotting and that could not be activated by plasmin. Thrombin also decreased the number of u-PA binding sites on GECs (p less than 0.05) without changing receptor affinity. Hirudin inhibited the binding and the cellular effects of thrombin, whereas thrombin inactivated by diisopropylfluorophosphate had no effect, indicating that both membrane binding and catalytic activity of thrombin were required. We conclude that thrombin, through specific membrane receptors, stimulates proliferation of GECs and decreases the fibrinolytic activity of GECs both at the cell surface and in the conditioned medium. These results suggest that thrombin could be involved in the pathogenesis of extracapillary proliferation and persistency of fibrin deposits in crescentic glomerulonephritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号