首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiamine-responsive megaloblastic anemia, also known as "TRMA" or "Rogers syndrome," is an early-onset autosomal recessive disorder defined by the occurrence of megaloblastic anemia, diabetes mellitus, and sensorineural deafness, responding in varying degrees to thiamine treatment. On the basis of a linkage analysis of affected families of Alaskan and of Italian origin, we found, using homozygosity mapping, that the TRMA-syndrome gene maps to a region on chromosome 1q23.2-23.3 (maximum LOD score of 3.7 for D1S1679). By use of additional consanguineous kindreds of Israeli-Arab origin, the putative disease-gene interval also has been confirmed and narrowed, suggesting genetic homogeneity. Linkage analysis generated the highest combined LOD-score value, 8.1 at a recombination fraction of 0, with marker D1S2799. Haplotype analysis and recombination events narrowed the TRMA locus to a 16-cM region between markers D1S194 and D1S2786. Several heterozygote parents had diabetes mellitus, deafness, or megaloblastic anemia, which raised the possibility that mutations at this locus predispose carriers in general to these manifestations. Characterization of the metabolic defect of TRMA may shed light on the role of thiamine deficiency in such common diseases.  相似文献   

2.
Netherton syndrome (NS [MIM 256500]) is a rare and severe autosomal recessive disorder characterized by congenital ichthyosis, a specific hair-shaft defect (trichorrhexis invaginata), and atopic manifestations. Infants with this syndrome often fail to thrive; life-threatening complications result in high postnatal mortality. We report the assignment of the NS gene to chromosome 5q32, by linkage analysis and homozygosity mapping in 20 families affected with NS. Significant evidence for linkage (maximum multipoint LOD score 10.11) between markers D5S2017 and D5S413 was obtained, with no evidence for locus heterogeneity. Analysis of critical recombinants mapped the NS locus between markers D5S463 and D5S2013, within an <3.5-cM genetic interval. The NS locus is telomeric to the cytokine gene cluster in 5q31. The five known genes encoding casein kinase Ialpha, the alpha subunit of retinal rod cGMP phosphodiesterase, the regulator of mitotic-spindle assembly, adrenergic receptor beta2, and the diastrophic dysplasia sulfate-transporter gene, as well as the 38 expressed-sequence tags mapped within the critical region, are not obvious candidates. Our study is the first step toward the positional cloning of the NS gene. This finding promises a better understanding of the molecular mechanisms that control epidermal differentiation and immunity.  相似文献   

3.
Tyrosinase-positive oculocutaneous albinism (ty-pos OCA) is an autosomal recessive disorder of the melanin pigmentary system. South African ty-pos OCA individuals occur with two distinct phenotypes, with or without darkly pigmented patches (ephelides, or dendritic freckles) on exposed areas of the skin. These phenotypes are concordant within families, suggesting that there may be more than one mutation at the ty-pos OCA locus. Linkage studies carried out in 41 families have shown linkage between markers in the Prader-Willi/Angelman syndrome (PWS/AS) region on chromosome 15q11-q13 and ty-pos OCA. Analysis showed no obligatory crossovers between the alleles at the D15S12 locus and ty-pos OCA, suggesting that the D15S12 locus is very close to or part of the disease locus, which is postulated to be the human homologue, P, of the mouse pink-eyed dilution gene, p. Unlike caucasoid "ty-pos OCA" individuals, negroid ty-pos OCA individuals do not show any evidence of locus heterogeneity. Studies of allelic association between the polymorphic alleles detected at the D15S12 locus and ephelus status suggest that there was a single major mutation giving rise to ty-pos OCA without ephelides. There may, however, be two major mutations causing ty-pos OCA with ephelides, one associated with D15S12 allele 1 and the other associated with D15S12 allele 2. The two loci, GABRA5 and D15S24, flanking D15S12, are both hypervariable, and many different haplotypes were observed with the alleles at the three loci on both ty-pos OCA-associated chromosomes and "normal" chromosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The syndrome of hypoparathyroidism associated with growth retardation, developmental delay, and dysmorphism (HRD) is a newly described, autosomal recessive, congenital disorder with severe, often fatal consequences. Since the syndrome is very rare, with all parents of affected individuals being consanguineous, it is presumed to be caused by homozygous inheritance of a single recessive mutation from a common ancestor. To localize the HRD gene, we performed a genomewide screen using DNA pooling and homozygosity mapping for apparently unlinked kindreds. Analysis of a panel of 359 highly polymorphic markers revealed linkage to D1S235. The maximum LOD score obtained was 4.11 at a recombination fraction of 0. Analysis of three additional markers-GGAA6F06, D1S2678, and D1S179-in a 2-cM interval around D1S235 resulted in LOD scores >3. Analysis of additional chromosome 1 markers revealed evidence of genetic linkage disequilibrium and place the HRD locus within an approximately 1-cM interval defined by D1S1540 and D1S2678 on chromosome 1q42-43.  相似文献   

5.
A second locus for familial high myopia maps to chromosome 12q.   总被引:30,自引:0,他引:30       下载免费PDF全文
Myopia, or nearsightedness, is the most common eye disorder worldwide. "Pathologic" high myopia, or myopia of <=-6.00 diopters, predisposes individuals to retinal detachment, macular degeneration, cataract, or glaucoma. A locus for autosomal dominant pathologic high myopia has been mapped to 18p11.31. We now report significant linkage of high myopia to a second locus at the 12q21-23 region in a large German/Italian family. The family had no clinical evidence of connective-tissue abnormalities or glaucoma. The average age at diagnosis of myopia was 5.9 years. The average spherical-component refractive error for the affected individuals was -9.47 diopters. Markers flanking or intragenic to the genes for the 18p locus, Stickler syndromes type I and II (12q13.1-q13.3 and 6p21.3), Marfan syndrome (15q21.1), and juvenile glaucoma (chromosome 1q21-q31) showed no linkage to the myopia in this family. The maximum LOD score with two-point linkage analysis in this pedigree was 3.85 at a recombination fraction of .0010, for markers D12S1706 and D12S327. Recombination events identified markers D12S1684 and D12S1605 as flanking markers that define a 30.1-cM interval on chromosome 12q21-23, for the second myopia gene. These results confirm genetic heterogeneity of myopia. The identification of this gene may provide insight into the pathophysiology of myopia and eye development.  相似文献   

6.
An increased plasma triglyceride (TG) level is associated with coronary artery disease (CAD) and myocardial infarction (MI) and is a key characteristic of the metabolic syndrome. Here, we used a genome-wide linkage scan to identify a novel genetic locus that influences the plasma TG level. We genotyped 714 persons in 388 multiplex Caucasian families with premature CAD and MI with 408 polymorphic microsatellite markers that cover the entire human genome. The genome-wide scan identified positive linkage for the quantitative TG trait to a novel locus on chromosome 1p31-32 [peak single-point logarithm of odds (LOD) = 3.57, peak multipoint LOD = 3.12]. For single-point linkage analysis, two markers, D1S1728 and D1S551, showed LOD scores of 2.42 and 3.57, respectively. For multipoint linkage analysis, three markers, D1S3736, D1S1728, and D1S551, showed LOD scores of 2.43, 3.03, and 3.12, respectively. No other chromosomal regions showed a LOD score of >2.2. This study identifies a new genetic locus for TG on chromosome 1p31-32. Future studies of the candidate genes at this locus will identify a specific gene influencing the TG, which will provide insights into novel regulatory mechanisms of TG metabolism and may be important for the development of therapies to prevent CAD.  相似文献   

7.
Wolfram syndrome, which is sometimes referred to as "DIDMOAD" (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), is an autosomal recessive neurodegenerative disorder for which only insulin-dependent diabetes mellitus and optic atrophy are necessary to make the diagnosis. Researchers have mapped Wolfram syndrome to chromosome 4p16.1, and, recently, a gene encoding a putative transmembrane protein has been cloned and mutations have been identified in patients. To pursue the possibility of locus heterogeneity, 16 patients from four different families were recruited. These patients, who have the Wolfram syndrome phenotype, also have additional features that have not previously been reported. There is an absence of diabetes insipidus in all affected family members. In addition, several patients have profound upper gastrointestinal ulceration and bleeding. With the use of three microsatellite markers (D4S432, D4S3023, and D4S2366) reported to be linked to the chromosome 4p16.1 locus, we significantly excluded linkage in three of the four families. The two affected individuals in one family showed homozygosity for all three markers from the region of linkage on chromosome 4p16.1. For the other three families, genetic heterogeneity for Wolfram syndrome was verified by demonstration of linkage to chromosome 4q22-24. In conclusion, we report the unique clinical findings and linkage-analysis results of 16 patients with Wolfram syndrome and provide further evidence for the genetic heterogeneity of this disorder. We also provide data on a new locus that plays a role in the etiology of insulin-dependent diabetes mellitus.  相似文献   

8.
Characterized by proximal muscle weakness and wasting, limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of clinical disorders. Previous reports have documented either autosomal dominant or autosomal recessive modes of inheritance, with genetic linkage studies providing evidence for the existence of at least 12 distinct loci. Gene products have been identified for five genes responsible for autosomal recessive forms of the disorder. We performed a genome scan using pooled DNA from a large Hutterite kindred in which the affected members display a mild form of autosomal recessive LGMD. A total of 200 markers were used to screen pools of DNA from patients and their siblings. Linkage between the LGMD locus and D9S302 (maximum LOD score 5.99 at recombination fraction .03) was established. Since this marker resides within the chromosomal region known to harbor the gene causing Fukuyama congenital muscular dystrophy (FCMD), we expanded our investigations, to include additional markers in chromosome region 9q31-q34.1. Haplotype analysis revealed five recombinations that place the LGMD locus distal to the FCMD locus. The LGMD locus maps close to D9S934 (maximum multipoint LOD score 7.61) in a region that is estimated to be approximately 4.4 Mb (Genetic Location Database composite map). On the basis of an inferred ancestral recombination, the gene may lie in a 300-kb region between D9S302 and D9S934. Our results provide compelling evidence that yet another gene is involved in LGMD; we suggest that it be named "LGMD2H."  相似文献   

9.
The nevoid basal cell carcinoma syndrome (NBCC) is an autosomal dominant multisystem disorder characterized by multiple basal cell carcinomas, jaw cysts, pits of the palms and/or soles, ectopic calcification, and skeletal malformations. The NBCC gene has recently been mapped to chromosome 9q22.3-9q31. In order to further define the region containing the NBCC gene, we have analyzed 137 individuals from eight families for linkage, using 11 markers from the region. Eight markers showed statistically significant evidence for linkage to NBCC. Three markers (D9S180, ALDOB, and D9S173) showed no definite recombination with the disease locus. All families showed some evidence for linkage to markers in this region. On the basis of the inspection of individual recombinants and previously published information about map location, we suggest the following order for the markers: D9S119-D9S12-D9S197-D9S196-(NBCC,D9S180 -D9S173,ALDOB)-D9S109- D9S127-(D9S53,D9S29). We are currently developing YAC contigs for the most closely linked markers, to further refine the location of the NBCC gene.  相似文献   

10.
Multiple synostoses syndrome is an autosomal dominant disorder characterized by premature onset of joint fusions, which initially affect the interphalangeal joints, by characteristic facies, and by deafness. We performed linkage analysis on a large Hawaiian family with multiple synostoses syndrome. Because another autosomal dominant disorder, proximal symphalangism, shares some clinical symptoms with multiple synostoses syndrome and has been linked to markers at loci at chromosome 17q21-22, we tested the hypothesis that multiple synostoses syndrome is linked to the same chromosomal region. Using polymorphic markers from the proximal symphalangism interval, we conducted linkage analysis and showed that the multiple synostoses-syndrome phenotype is linked to the same chromosomal region. A maximum LOD score of 3.98 at recombination fraction of .00 was achieved for the marker at locus D17S787. Further genetic analysis identified individuals with recombinant genotypes, allowing localization of the disease gene within the interval D17S931-D17S792, a 16-cM region. These data provide evidence that multiple synostoses syndrome and proximal symphalangism may be allelic disorders.  相似文献   

11.
Myoclonus-dystonia (M-D) is an autosomal dominant disorder characterized by myoclonic and dystonic muscle contractions that are often responsive to alcohol. The dopamine D2 receptor gene (DRD2) on chromosome 11q has been implicated in one family with this syndrome, and linkage to a 28-cM region on 7q has been reported in another. We performed genetic studies, using eight additional families with M-D, to assess these two loci. No evidence for linkage was found for 11q markers. However, all eight of these families showed linkage to chromosome 7 markers, with a combined multipoint LOD score of 11.71. Recombination events in the families define the disease gene within a 14-cM interval flanked by D7S2212 and D7S821. These data provide evidence for a major locus for M-D on chromosome 7q21.  相似文献   

12.
Wolfram syndrome (DIDMOAD syndrome; MIM 222300) is an autosomal recessive neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and bilateral optic atrophy. Previous linkage analysis of multiply affected families indicated that the gene for Wolfram syndrome is on chromosome 4p, and it produced no evidence for locus heterogeneity. We have investigated 12 U.K. families with Wolfram syndrome, and we report confirmation of linkage to chromosome 4p, with a maximum two-point LOD score of 4.6 with DRD5, assuming homogeneity, and of 5.1, assuming heterogeneity. Overlapping multipoint analysis using six markers at a time produced definite evidence for locus heterogeneity: the maximum multipoint LOD score under homogeneity was <2, whereas when heterogeneity was allowed for an admixture a LOD of 6.2 was obtained in the interval between D4S432 and D4S431, with the peak close to the marker D4S3023. One family with an atypical phenotype was definitely unlinked to the region. Haplotype inspection of the remaining 11 families, which appear linked to chromosome 4p and had typical phenotypes, revealed crossover events during meiosis, which also placed the gene in the interval D4S432 and D4S431. In these families no recombinants were detected with the marker D4S3023, which maps within the same interval.  相似文献   

13.
Split hand/split foot (SHSF; also known as ectrodactyly) is a human developmental disorder characterized by missing central digits and other distal limb malformations. An association between SHSF and cytogenetically visible rearrangements of chromosome 7 at bands q21-q22 provides compelling evidence for the location of a causative gene at this location, and the locus has been designated SHFD1. In the present study, marker loci were localized to the SHFD1 critical region through the analysis of somatic cell hybrids derived from individuals with SHSF and cytogenetic abnormalities involving the 7q21-q22 region. Combined genetic and physical data suggest that the order of markers in the SHFD1 critical region is cen-D7S492-D7S527-(D7S479-D7S491)-SHFD1-++ +D7S554-D7S518-qter. Dinucleotide repeat polymorphisms at three of these loci were used to test for linkage of SHSF to this region in a large pedigree that demonstrates autosomal dominant SHSF. Evidence against linkage of the SHSF gene to 7q21-q22 was obtained in this pedigree. Therefore, combined molecular and genetic data provide evidence for locus heterogeneity in autosomal dominant SHSF. We propose the name SHSF2 for this second locus.  相似文献   

14.
Fine mapping of the nail-patella syndrome locus at 9q34.   总被引:4,自引:0,他引:4       下载免费PDF全文
Nail-patella syndrome (NPS), or onychoosteodysplasia, is an autosomal dominant, pleiotropic disorder characterized by nail dysplasia, absent or hypoplastic patellae, iliac horns, and nephropathy. Previous studies have demonstrated linkage of the nail-patella locus to the ABO and adenylate kinase loci on human chromosome 9q34. As a first step toward isolating the NPS gene, we present linkage analysis with 13 polymorphic markers in five families with a total of 69 affected persons. Two-point linkage analysis with the program MLINK showed tight linkage of NPS and the anonymous markers D9S112 (LOD = 27.0; theta = .00) and D9S315 (LOD = 22.0; theta = .00). Informative recombination events place the NPS locus within a 1-2-cM interval between D9S60 and the adenylate kinase gene (AK1).  相似文献   

15.
Primary microcephaly (MCPH) is an autosomal-recessive congenital disorder characterized by smaller-than-normal brain size and mental retardation. MCPH is genetically heterogeneous with six known loci: MCPH1–MCPH6. We report mapping of a novel locus, MCPH7, to chromosome 1p32.3–p33 between markers D1S2797 and D1S417, corresponding to a physical distance of 8.39 Mb. Heterogeneity analysis of 24 families previously excluded from linkage to the six known MCPH loci suggested linkage of five families (20.83%) to the MCPH7 locus. In addition, four families were excluded from linkage to the MCPH7 locus as well as all of the six previously known loci, whereas the remaining 15 families could not be conclusively excluded or included. The combined maximum two-point LOD score for the linked families was 5.96 at marker D1S386 at θ = 0.0. The combined multipoint LOD score was 6.97 between markers D1S2797 and D1S417. Previously, mutations in four genes, MCPH1, CDK5RAP2, ASPM, and CENPJ, that code for centrosomal proteins have been shown to cause this disorder. Three different homozygous mutations in STIL, which codes for a pericentriolar and centrosomal protein, were identified in patients from three of the five families linked to the MCPH7 locus; all are predicted to truncate the STIL protein. Further, another recently ascertained family was homozygous for the same mutation as one of the original families. There was no evidence for a common haplotype. These results suggest that the centrosome and its associated structures are important in the control of neurogenesis in the developing human brain.  相似文献   

16.
Polycystic kidney disease is an inherited heterogeneous disorder that affects approximately 11000 Europeans. It is characterized mainly by the formation of cysts in the kidney that lead to end-stage renal failure with late age of onset. Three loci have been identified, PKD1 on the short arm of chromosome 16, which has recently been isolated and characterized, PKD2 on the long arm of chromosome 4, and a third locus of unknown location, that is apparently much rarer. In families that transmit the PKD2 gene there is a significantly later age of onset of symptoms, compared with families that transmit the PKD1 gene, and in general they present with milder progression of symptomatology. For the first time we attempted molecular genetic analysis in seven Cypriot families using highly polymorphic markers around the PKD1 and PKD2 genes. Our data showed that there is genetic and phenotypic heterogeneity among these families. For four of the families we obtained strong evidence for linkage to the PKD1 locus. In two of these families linkage to PKD1 was strengthened by excluding linkage to PKD2 with the use of marker D4S423. In three other families we showed linkage to the PKD2 locus. In the largest of these families one recombinant placed marker D4S1534 distal to D4S231, thereby rendering it the closest proximal marker known to us to date. The application of molecular methods allowed us to make presymptomatic diagnosis for a number of at-risk individuals.  相似文献   

17.
We performed genetic mapping studies of an 11-generation pedigree with an autosomal dominant, juvenile-onset motor-systems disease. The disorder is characterized by slow progression, distal limb amyotrophy, and pyramidal tract signs associated with severe loss of motor neurons in the brain stem and spinal cord. The gene for this disorder, classified as a form of juvenile amyotrophic lateral sclerosis (ALS), is designated "ALS4." We performed a genomewide search and detected strong evidence for linkage of the ALS4 locus to markers from chromosome 9q34. The highest LOD score (Z) was obtained with D9S1847 (Z=18.8, recombination fraction of .00). An analysis of recombinant events identified D9S1831 and D9S164 as flanking markers, on chromosome 9q34, that define an approximately 5-cM interval that harbors the ALS4 gene. These results extend the degree of heterogeneity within familial ALS syndromes, and they implicate a gene on chromosome 9q34 as critical for motor-neuron function.  相似文献   

18.
Muscle-eye-brain disease (MEB) is an autosomal recessive disease of unknown etiology characterized by severe mental retardation, ocular abnormalities, congenital muscular dystrophy, and a polymicrogyria-pachygyria-type neuronal migration disorder of the brain. A similar combination of muscle and brain involvement is also seen in Walker-Warburg syndrome (WWS) and Fukuyama congenital muscular dystrophy (FCMD). Whereas the gene underlying FCMD has been mapped and cloned, the genetic location of the WWS gene is still unknown. Here we report the assignment of the MEB gene to chromosome 1p32-p34 by linkage analysis and homozygosity mapping in eight families with 12 affected individuals. After a genomewide search for linkage in four affected sib pairs had pinpointed the assignment to 1p, the MEB locus was more precisely assigned to a 9-cM interval flanked by markers D1S200 proximally and D1S211 distally. Multipoint linkage analysis gave a maximum LOD score of 6.17 at locus D1S2677. These findings provide a starting point for the positional cloning of the disease gene, which may play an important role in muscle function and brain development. It also provides an opportunity to test other congenital muscular dystrophy phenotypes, in particular WWS, for linkage to the same locus.  相似文献   

19.
Tetra-amelia is a rare human genetic disorder characterized by complete absence of all four limbs and other anomalies. We studied a consanguineous family with four affected fetuses displaying autosomal recessive tetra-amelia and craniofacial and urogenital defects. By homozygosity mapping, the disease locus was assigned to chromosome 17q21, with a maximum multipoint LOD score of 2.9 at markers D17S931, D17S1785, D17SS1827, and D17S1868. Further fine mapping defined a critical interval of approximately 8.9 Mb between D17S1299 and D17S797. We identified a homozygous nonsense mutation (Q83X) in the WNT3 gene in affected fetuses of the family. WNT3, a human homologue of the Drosophila wingless gene, encodes a member of the WNT family known to play key roles in embryonic development. The Q83X mutation truncates WNT3 at its amino terminus, suggesting that loss of function is the most likely cause of the disorder. Our findings contrast with the observation of early lethality in mice homozygous for null alleles of Wnt3. To our knowledge, this is the first report of a mutation in a WNT gene associated with a Mendelian disorder. The identification of a WNT3 mutation in tetra-amelia indicates that WNT3 is required at the earliest stages of human limb formation and for craniofacial and urogenital development.  相似文献   

20.
Cowden syndrome (CS) is an autosomal dominant disorder associated with the development of hamartomas and benign tumors in a variety of tissues, including the skin, thyroid, breast, endometrium, and brain. It has been suggested that women with CS are at increased risk for breast cancer. A locus for CS was recently defined on chromosome 10 in 12 families, resulting in the identification of the CS critical interval, between the markers D10S215 and D10S541. More recently, affected individuals in four families with CS have been shown to have germ-line mutations in a gene known as "PTEN," or "MMAC1," which is located in the CS critical interval on chromosome 10. In this study, we report three novel MMAC1 mutations in CS and demonstrate that MMAC1 mutations are associated with CS and breast cancer. Furthermore, we also show that certain families and individuals with CS do not have mutations in the coding sequence of MMAC1. Finally, we did not detect MMAC1 mutations in a subpopulation of individuals with early-onset breast cancer, suggesting that germ-line mutations in this gene do not appear to be common in this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号