首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Döhler  K. -R. Przybylla 《Planta》1973,110(2):153-158
Summary CO2 exchange, 14CO2 fixation and 14C-products of Anacystis nidulans (strain L 1402-1) were studied during the induction period at temperatures of +15°C and+35°C. At+15°C the stationary rates of CO2 uptake and respiration were reached directly. At+35°C a maximum of CO2 uptake could be observed at the beginning of the illumination period followed by a lower steady rate of photosynthesis. In the following dark period a CO2 gush appeared at+35°C. The magnitude of the CO2 outburst is relatively independent of the photosyntbetic period. The autoradiographic studies showed that the Calvin cycle is the main carboxylation pathway in Anucystis. At a temperature of +35°C serine was labelled after 20 sec of photosynthesis. At+15°C, on the other hand, a low radio-activity appeared in serine after 5 min of photosynthesis. The results show that photorespiration of Anacystis is stimulated by high temperatures.  相似文献   

2.
Summary Leaf energy balance and gas-exchange characteristics were studied in Mimulus cardinalis at 400 m and Mimulus lewisii at 2,700 m in the Sierra Nevada of central California. In contrast to previous observations, leaf temperatures were not near 30° C at air temperatures from 20 to 40° C but were coupled quite closely to air temperature. Stomatal conductance in both species decreased in response to increases in the water vapor concentration gradient, a response opposite that required to establish 30°C leaf temperatures over a wide range of air temperatures. The temperature optima for photosynthesis were broad in both species but 5° C higher for M. cardinalis than for M. lewisii. The direct or indirect effects of altitude did not contribute significantly to the maintenance of constant leaf temperatures. For both species, maintaining constant leaf temperatures appears to be less important than avoiding inhibitory water stress or diffusion limitation of photosynthesis.  相似文献   

3.
Bunce  J 《Journal of experimental botany》1998,49(326):1555-1561
The temperature dependencies of the solubility of carbon dioxide and oxygen in water and the temperature dependency of the kinetic characteristics of the ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco) enzyme result in the short-term stimulation of photosynthesis with a doubling of carbon dioxide from 350 to 700 mol mol-1 usually decreasing from about 90% at 30C to about 25% at 10C at high photon flux. In field-grown wheat and barley, the expected values at 30°C were observed, but also values as high as 60% at 10°C. The much larger than expected stimulation at cool temperatures in these species also occurred in plants grown at 15°C, but not at 23°C in controlled environment chambers. Gas exchange analysis indicated that an unusually high diffusive limitation was not an explanation for the large response. Assessment of the apparent in vivo specificity of Rubisco by determining the carbon dioxide concentration at which carboxylation equalled carbon dioxide release from oxygenation, indicated that growth at low temperatures altered the apparent enzyme specificity in these species compared to these species grown at the warmer temperature. Inserting the observed specificities into a biochemical model of photosynthesis indicated that altered Rubisco specificity was consistent with the observed rates of assimilation. Whether altered apparent Rubisco specificity is caused by altered stoichiometry of photorespiration or an actual change in enzyme specificity, the results indicate that the temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide may vary greatly with species and with prior exposure to low temperature.Keywords: Barley, carbon dioxide, photosynthesis, temperature, wheat.   相似文献   

4.
Summary In altitudinal ecotypes of Trifolium repens L. the oxygen inhibition of photosynthesis, the CO2 compensation point and the sugar content were examined. Excised leaves were exposed to 14CO2 for 20 s and 60 min periods and the radioactivity in different photosynthetic products was studied. In all experiments the temperature during growth and measurement was varied.To some extent, the differences between the ecotypes and the differences between the plants grown under different temperature conditions are similar. These ecotypic differences appear to reflect long-term adaptation to the general temperature conditions at each site. Alpine ecotypes and plants grown at low temperatures show an increased photorespiration. The 14C-labeling of certain photosynthetic products also changes with the ecotypes and the temperatures during growth. Other differences between the ecotypes are interpreted as adaptations to the partial pressure of Co2 and to the length of the growing season, both of which change with altitude.The metabolism of photosynthesis depends greatly on temperature. The 14C-experiments and the study of photorespiration suggest that, to a certain degree, adaptation can compensate for this dependence on temperature.  相似文献   

5.
CO2 and water vapour exchange rates of four alpine herbs namely: Rheum emodi, R. moorcroftianum, Megacarpaea polyandra and Rumex nepalensis were studied under field conditions at 3600 m (natural habitat) and 550 m altitudes. The effect of light and temperature on CO2 and water vapour exchange was studied in the plants grown at lower altitude. In R. moorcroftianum and R. nepalensis, the average photosynthesis rates were found to be about three times higher at 550 m as compared to that under their natural habitat. However, in M. polyandra, the CO2 exchange rates were two times higher at 3600 m than at 550 m but in R. emodi, there were virtually no differences at the two altitudes. These results indicate the variations in the CO2 exchange rates are species specific. The change in growth altitude does not affect this process uniformly.The transpiration rates in R. emodi and M. polyandra were found to be very high at 3600 m compared to 550 m and are attributed to overall higher stomatal conductance in plants of these species, grown at higher altitude. The mid-day closure of stomata and therefore, restriction of transpirational losses of water were observed in all the species at 550 m altitude. In addition to the effect of temperature and relative humidity, the data also indicate some endogenous rhythmic control of stomatal conductance.The temperature optima for photosynthesis was close to 30°C in M. polyandra and around 20°C in the rest of the three species. High temperature and high light intensity, as well as low temperature and high light intensity, adversely affect the net rate of photosynthesis in these species.Both light compensation point and dark respiration rate increased with increasing temperature.The effect of light was more prominent on photosynthesis than the effect of temperature, however, on transpiration the effect of temperature was more prominent than the effect of light intensity.No definite trends were found in stomatal conductance with respect to light and temperature. Generally, the stomatal conductance was highest at 20°C.The study reveals that all these species can easily be cultivated at relatively lower altitudes. However, proper agronomical methodology will need to be developed for better yields.  相似文献   

6.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

7.
D. Wilson 《Planta》1970,91(3):274-278
Summary Leaves from Lolium perenne plants grown at day/night temperatures of 15°/10° had slower rates of apparent photosynthesis at 15° than leaves from plants grown at 25°/20°. Electron microscopy showed a higher starch concentration in chloroplasts from low- compared with the higher temperature-grown plants. However, all differences in apparent photosynthesis were negatively associated with differences in size of mesophyll cells. It is suggested that the presence of starch per se had no effect on photosynthesis rate and that temperature during growth influences subsequent rates because leaves from the higher temperature have smaller cells and chloroplasts than those from the lower one.  相似文献   

8.
G. Döhler  F. Braun 《Planta》1971,98(4):357-361
Summary The formations of transients in CO2 exchange in the blue-green alga Anacystic nidulans is dependent on the temperature used during the measurements. The algae were grown in a low light intensity (4000 lux) under normal air conditions and measured in the same low CO2 concentration (0.03 vol. %) but under a higher light intensity (10 000 lux). At a temperature of +20°C the stationary rate of CO2 uptake was reached directly. At a temperature of +35°C, on the other hand, a maximum of CO2 uptake could be observed at the beginning of the light period followed by a steady rate of photosynthesis, which was higher than at +20°C. In the beginning of the dark period a CO2 outburst appeared at 35°C.Only at a low temperature (+20°C) did we find a light induced glycollate excretion; after a maximum at 7 1/2 minutes illumination the release of glycollate ceases and the level decreases to a lower value. A similar time course exists during illumination in red light (621 nm, 1.5·10-8 einsteins) and a temperature of +20°C. In blue light (432 nm, 1,5·10-8 einsteins, +20°C) and in white light at a high temperature (+35°C) we could not find any light induced glycollate excretion. Our results are discussed in reference to the photorespiration. We explain the formation of transients in CO2 uptake of Anacystis at a high temperature (+35°C) and in blue light (+20°C) on the basis of the influence of photorespiration.  相似文献   

9.
Summary The influence of elevational changes on plant transpiration was evaluated using leaf energy balance equations and well-known elevational changes in the physical parameters that influence water vapor diffusion. Simulated transpirational fluxes for large leaves with low and high stomatal resistances to water vapor diffusion were compared to small leaves with identical stomatal resistances at elevations ranging from sea level to 4 km. The specific influence of various air temperature lapse rates was also tested. Validation of the simulated results was accomplished by comparing actual field measurements taken at a low elevation (300 m) desert site with similar measurements for a high elevation (2,560 m) mountain research site. Close agreement was observed between predicted and measured values of transpiration for the environmental and leaf parameters tested.Substantial increases in solar irradiation and the diffusion coefficient for water vapor in air (D wv) occurred with increasing elevation, while air and leaf temperatures, the water vapor concentration difference between the leaf and air, longwave irradiation, and the thermal conductivity coefficient for heat in air decreased with increasing elevation. These changes resulted in temperatures for sunlit leaves that were further above air temperature at higher elevations, especially for large leaves. For large leaves with low stomatal resistances, transpirational fluxes for low-elevation desert plants were close to those predicted for high-elevation plants even though the sunlit leaf temperatures of these mountain plants were over 10°C cooler. Simulating conditions with a low air temperature lapse rate (0.003° C m-1 and 0.004° C m-1) resulted in predicted transpirational fluxes that were greater than those calculated for the desert site. Transpiration for smaller leaves decreased with elevation for all lapse rates tested (0.003° C m-1 to 0.010° C m-1). However, transpirational fluxes at higher elevations were considerably greater than expected for all leaves, especially larger leaves, due to the strong influence of increased solar heating and a greater D wv. These results are discussed in terms of similarities in leaf structure and plant habit observed among low-elevation desert plants and high-elevation alpine and subalpine plants.  相似文献   

10.
The distribution and abundance of Thelypteris limbosperma, Athyrium distentifolium, and Matteuccia struthiopteris are modelled statistically in relation to 14 environmental variables along the major climatic, topographic, and edaphic gradients in western Norway. The data are from 624 stands from which measurements or estimates of mean January and mean July temperatures, humidity, altitude, aspect, and slope are available. From 182 of these stands eight soil variables have also been measured. The species responses are quantified by two numerical methods: Gaussian logit regression and weighted averaging (WA) regression. The estimated WA optima suggest that A. distentifolium has an ecological preference for low July and January temperatures, high altitudes, and soils of low-medium pH and base content. The species shows statistically significant Gaussian responses with summer temperature, humidity (= Martonnes humidity index), altitude, slope, aspect, pH, cation exchange capacity, and base saturation with optima of 8.7 °C, 188.9, 1220 m, 28°, 29°, 4.8, 13.77 mEq 100 g dry soil-1, and 13.4%, respectively. These suggest that the occurrence and relative abundance of A. distentifolium are well predicted by summer temperature, topography, and soil pH and base status. T. limbosperma has WA optima that suggest that it favours moderately high winter and summer temperatures, high humidity, medium altitude, and soils of low pH and base content. It has significant Gaussian responses to summer temperature (optimum =12.6 °C), winter temperature (-1.8 °C), humidity (179.2), altitude (459.5 m), slope (22.5°), and Na (0.7 mg 100 g dry soil-1). These suggest that climatic factors, altitude, and slope are significant predictors for its occurrence and abundance. M. struthiopteris has high WA optima for summer temperature, pH, Ca, Mg, K, Na, cation exchange capacity (CEC), and base saturation, and a low optima for humidity and winter temperature. Of these, summer temperature (16.0 °C), Ca (63.1 mg 100 g dry soil-1), Mg (41.0 mg 100 g dry soil-1), K (23.6 mg 100 g dry soil-1), Na (5.0 mg 100 g dry soil-1), CEC (60.7 mEq 100 g dry soil-1), and base saturation (56.3%) have significant Gaussian logit responses, as do aspect (150.2°) and loss-on-ignition (9.4%). These results suggest that the occurrence and relative abundance of M. struthiopteris are well predicted by high soil base cations, a generally southern aspect, low organic content in the soil, and high July temperatures.  相似文献   

11.
Export and photosynthesis in leaves of Salvia splendens were measured concurrently during steady-state 14CO2 labeling conditions. Under ambient CO2 and O2 conditions, photosynthesis and export rates were similar at 15 and 25[deg]C, but both declined as leaf temperature was raised from 25 to 40[deg]C. Suppressing photorespiration between 15 and 40[deg]C by manipulating CO2 and O2 levels resulted in higher rates of leaf photosynthesis, total sugar synthesis, and export. There was a linear relationship between the rate of photosynthesis and the rate of export between 15 and 35[deg]C. At these temperatures, 60 to 80% of the carbon fixed was readily exported with sucrose, raffinose, and stachyose, which together constituted over 90% of phloem mobile assimilates. Above 35[deg]C, however, export during photosynthesis was inhibited both in photorespiratory conditions, which inhibited photosynthesis, and in nonphotorespiratory conditions, which did not inhibit photosynthesis. Sucrose and raffinose but not stachyose accumulated in the leaf at 40[deg]C. When leaves were preincubated at 40[deg]C and then cooled to 35[deg]C, export recovered more slowly than photosynthesis. These data are consistent with the view that impairment of export processes, rather than photosynthetic processes associated with light trapping, carbon reduction, and sucrose synthesis, accounted for the marked reduction in export between 35 and 40[deg]C. Taken together, the data indicated that temperature changes between 15 and 40[deg]C had two effects on photosynthesis and concurrent export. At all temperatures, suppressing photorespiration increased both photosynthesis and export, but above 35[deg]C, export processes were more directly inhibited independent of changes in photorespiration and photosynthesis.  相似文献   

12.
The effects of temperature on photosynthesis of a rosette plant growing at ground level, Acaena cylindrostachya R. et P., and an herb that grows 20–50 cm above ground level, Senecio formosus H.B.K., were studied along an altitudinal gradient in the Venezuelan Andes. These species were chosen in order to determine – in the field and in the laboratory – how differences in leaf temperature, determined by plant form and microenvironmental conditions, affect their photosynthetic capacity. CO2 assimilation rates (A) for both species decreased with increasing altitude. For Acaena leaves at 2900 m, A reached maximum values above 9 μmol m−2 s−1, nearly twice as high as maximum A found at 3550 m (5.2) or at 4200 m (3.9). For Senecio leaves, maximum rates of CO2 uptake were 7.5, 5.8 and 3.6 μmol m−2 s−1 for plants at 2900, 3550 and 4200 m, respectively. Net photosynthesis-leaf temperature relations showed differences in optimum temperature for photosynthesis (A o.t.) for both species along the altitudinal gradient. Acaena showed similar A o.t. for the two lower altitudes, with 19.1°C at 2900 m and 19.6°C at 3550 m, while it increased to 21.7°C at 4200 m. Maximum A for this species at each altitude was similar, between 5.5 and 6.0 μmol m−2 s−1. For the taller Senecio, A o.t. was more closely related to air temperatures and decreased from 21.7°C at 2900 m, to 19.7°C at 3550 m and 15.5°C at 4200 m. In this species, maximum A was lower with increasing altitude (from 6.0 at 2900 m to 3.5 μmol m−2 s−1 at 4200 m). High temperature compensation points for Acaena were similar at the three altitudes, c. 35°C, but varied in Senecio from 37°C at 2900 m, to 39°C at 3550 m and 28°C at 4200 m. Our results show how photosynthetic characteristics change along the altitudinal gradient for two morphologically contrasting species influenced by soil or air temperatures. Received: 5 July 1997 / Accepted: 25 October 1997  相似文献   

13.
Summary Pollen selection experiments were conducted in tomato to determine the effects of low temperature conditions during pollination on the rate of root elongation of the progeny. Pollen was harvested from an F1 interspecific hybrid between a high altitude Lycopersicon hirsutum accession and the cultivated tomato L. esculentum. The pollen was applied to stigmas of malesterile L. esculentum plants maintained in growth chambers set at either 12°C/7°C or 24°C/18°C. BC1 seeds from the low and normal temperature crosses were germinated and root elongation rate was measured at either 9°C or 24°C. At 9°C, the rate of root elongation for progeny of the low temperature crosses was higher than for progeny of crosses at normal temperatures; at 24°C the rate of root elongation was similar for the two crossing treatments. To compare the temperature responses of the two backcross populations we also calculated the relative inhibitory effect of low temperature on the rate of root elongation: the ratio between the rate of root elongation at 9°C to that at 24°C. Root elongation of seedlings from the low temperature crosses was less inhibited by the cold than root elongation for progeny of the normal temperature crosses. These results suggest a relationship between pollen selection at low temperatures and the expression of a sporophytic trait under the same environmental stress.  相似文献   

14.
Cultures of the obligate psychrophilic diatom Fragilariopsis cylindrus (Grunow) were grown for 4 months under steady-state conditions at −1 °C and +7 °C (50 μmol photons m−2 s−1) prior to measurements in order to investigate long-term acclimation of photosynthesis to both temperatures. No differences in maximum intrinsic quantum yield of PS II (FV/FM) and relative electron transport rates could be detected at either temperature after 4 months of acclimation. Measurements of photosynthesis (relative electron transport rates) vs. irradiance (P vs. E curves) revealed similar values for relative light utilization efficiency (α = 0.57 at −1 °C, α = 0.60 at +7 °C) but higher values for irradiance levels at which photosynthesis saturates (EK) at −1 °C and, therefore, higher maximum photosynthesis (PMAX = 54 (relative units) at −1 °C, PMAX = 49 at +7 °C). Nonphotochemical quenching (NPQ) measurements at 385 μmol photons m−2 s−1 indicated higher (37%) NPQ for diatoms grown at −1 °C compared to +7 °C, which was possibly related to a 2-fold increase in the concentration of the pigment diatoxanthin and a 9-fold up-regulation of a gene encoding a fucoxanthin chlorophyll a,c-binding protein. Expression of the D1 protein encoding gene psbA was ca. 1.5-fold up-regulated at −1 °C, whereas expression levels of other genes from Photosystem II (psbC, psbU, psbO), as well as rbcL, the gene encoding the Rubisco large subunit were similar at both temperatures. However, a 2-fold up-regulation of a plastid glyceraldehyde-P dehydrogenase at −1 °C indicated enhanced Calvin cycle activity. This study revealed for the first time that a polar diatom could efficiently acclimate photosynthesis over a wide range of polar temperatures given enough time. Acclimation of photosynthesis at −1 °C was probably regulated similarly to high light acclimation.  相似文献   

15.
H. Fock  K. Klug  D. T. Canvin 《Planta》1979,145(3):219-223
Using an open gas-exchange system, apparent photosynthesis, true photosynthesis (TPS), photorespiration (PR) and dark respiration of sunflower (Helianthus annuus L.) leaves were determined at three temperatures and between 50 and 400 l/l external CO2. The ratio of PR/TPS and the solubility ratio of O2/CO2 in the intercellular spaces both decreased with increasing CO2. The rate of PR was not affected by the CO2 concentration in the leaves and was independent of the solubility ratio of oxygen and CO2 in the leaf cell. At photosynthesis-limiting concentrations of CO2, the ratio of PR/TPS significantly increased from 18 to 30°C and the rate of PR increased from 4.3 mg CO2 dm-2 h-1 at 18°C to 8.6 mg CO2 dm-2 h-1 at 30°C. The specific activity of photorespired CO2 was CO2-dependent but temperature-independent, and the carbon traversing the glycolate pathway appeared to be derived both from recently fixed assimilate and from older reserve materials. It is concluded that PR as a percentage of TPS is affected by the concentrations of O2 and CO2 around the photosynthesizing cells, but the rate of PR may also be controlled by other factors.Abbreviations APS apparent photosynthesis (net CO2 uptake) - PR photorespiration (CO2 evolution in light) - RuBP ribulose-1,5-bisphosphate - TPS true photosynthesis (true CO2 uptake)  相似文献   

16.
17.
Effects of temperature on the gas exchange of leaves in the light and dark   总被引:3,自引:0,他引:3  
G. Hofstra  J. D. Hesketh 《Planta》1969,85(3):228-237
Summary Evolution of CO2 into CO2-free air was measured in the light and in the dark over a range of temperatures from 15 to 50°. Photosynthetic rates were measured in air and O2-free air over the same range of temperatures. Respiration in the light had a different sensitivity to temperature compared with respiration in the dark. At the lower temperatures the rate of respiration in the light was higher than respiration in the dark, whereas at temperatures above 40° the reverse was observed. For any one species the maximum rates of photosynthesis and photorespiration occur at about the same temperature. The maximum rate for dark respiration generally is found at a temperature about 10° higher. Zea mays and Atriplex nummularia showed no enhancement of photosynthesis in O2-free air nor any evolution of CO2 in CO2-free air at any of the temperatures.  相似文献   

18.
The genus Watsonia, belonging to the family Iridaceae, is comprised of about 50 species including W. laccata (Jacquin) Ker Gawler that flowers from September to November following low temperature and winter rainfall. Therefore, we hypothesized that flowering would be favored by forcing at low greenhouse temperatures. Using clonal W. laccata corms, four experiments were designed to investigate the effect of temperatures during corm storage, forcing, and their interaction on growth and flowering. Corm formation is favored by growing plants at 18°–20°/15°–17 °C and 21°–23°/18°–20 °C, day/night temperatures. Flowering was earliest with corms produced at 24°–26°/18°–20 °C and forced at 18°–20/15°–17 °C, and was significantly delayed when forced at 27°–29°/24°–26 °C. Flowering was, however, favored by 2 or 4 weeks of high temperatures (27°–29°/24°–26 °C) prior to forcing at low temperatures (18°–20°/15°–17 °C). The number of florets was not significantly affected by corm storage, forcing temperatures, or their interaction, although forcing at high temperatures tends to reduce the floret number. Burn symptom at the tips of leaves was frequently observed, and further studies are required to understand the cause of the tip burn and how to correct the symptom.  相似文献   

19.
Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 mol O2·m–2·s–1 when leaves were transferred from 20 to 5°C for 30 min. Following cold-hardening at 5°C for ten weeks, photosynthesis recovered to 15.05 mol O2·m–2·s–1,comparable to the nonhardened rate at 20°C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5°C. The large increase in esterified phosphate in coldhardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5°C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.Abbreviations DHAP dihydroxyacetone phosphate - Fru6P fructose-6-phosphate - Fru 1,6BP fructose-1,6-bisphosphate - Fru1,6BPase fructose-1,6-bisphosphatase - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - CH cold-hardened rye grown at 5°C - NH nonhardened rye grown at 24°C - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - UDPGlc uridine 5-diphosphoglucose This work was supported by operating grants from the Swedish Natural Sciences Research Council to G.Ö. and P.G.  相似文献   

20.
The photosynthetic characteristics of a giant alpine plant, Rheum nobile Hook. f. et Thoms. and of some other alpine species were studied in situ at 4300 m, in the Eastern Himalaya, Nepal, during the summer monsoon season. Although rainy and overcast weather was predominant, the daytime photon flux density (400–700 nm) ranged from 300 to 500 mol quanta m-2 s-1. Under such conditions, the temperature of leaves of R. nobile ranged from 10 to 14°C, and the rate of photosynthetic CO2 exchange ranged from 10 to 16 mol CO2 m-2 s-1. The ratios of the maximum rate of photosynthetic CO2 fixation to leaf nitrogen content (defined as instantaneous nitrogen-use efficiency, NUE) for the Himalayan forbs that were examined in situ were similar to the NUE values reported for lowland herbaceous species examined under lowland conditions. In contrast to the common belief, theoretical calculations indicate that the decrease in the rate of photosynthesis due to low atmospheric pressure is small. These Himalayan forbs appeared to overcome this small disadvantage by increasing stomatal conductance. Suppression of photosynthesis caused by blockage of stomata by raindrops appeared to be avoided by either of two mechanisms: plants had large hypostomatous leaves that expanded horizontally or they had obliquely oriented amphistomatous leaves without bundle sheath extensions. All these observations indicate that the gas-exchange characteristics of alpine forbs in the Eastern Himalaya are adapted to the local wet and humid monsoon conditions and thus photosynthetic rates attained during the monsoon period are similar to those of lowland plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号