共查询到20条相似文献,搜索用时 15 毫秒
1.
Alfalfa (Medicago sativa L.) growth and nodulation in acid soil is reduced because the plant and its bacterial symbiontRhizobium meliloti cannot tolerate acid, aluminum-rich soil. A study was conducted to determine if a relatively acid-tolerant alfalfa germplasm combined with a relatively acid-tolerantR. meliloti strain could overcome these limitations. In a light room study, an acid-tolerant alfalfa germplasm inoculated with a more acid-tolerantR. meliloti strain produced greater top growth, nodule number and weight, and acetylene reduction values in an unlimed soil (pH 4.6) than the same germplasm inoculated with a relatively acid-sensitiveR. meliloti strain or an acid-sensitive germplasm inoculated with either a relatively acid-tolerant or acid-sensitiveR. meliloti strain. 相似文献
2.
A field experiment conducted at Central Rice Research Institute, Cuttack, during three successive seasons showed that with
the 120-day-duration variety Ratna two dual crops ofAzolla pinnata R. Brown (Bangkok isolate) could be achieved 25 and 50 days after transplanting (DAT) by inoculating 2.0 t ha−1 of fresh Azolla 10 and 30 DAT respectively. One basal crop of Azolla could also be grown using the same inoculum 20 days
before transplanting (DBT) in fallow rice fields. The three crops of Azolla grown—once before transplanting and twice after
transplanting—gave an average total biomass of 38–63 and 43–64 t ha−1 fresh Azolla containing 64–90 and 76–94 kg N ha−1 respectively in the square and rectangular spacings. Two crops of Azolla grown only as a dual crop, on the other hand, gave
26–39 and 29–41 t ha−1 fresh Azolla which contained 44–61 and 43–59 kg N ha−1 respectively.
Growth and yield of rice were significantly higher in Azolla basal plus Azolla dual twice incorporated treatments than in
the Azolla dual twice incorporation, Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea treatments. Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea showed similar yields but Azolla dual twice incorporation was significantly lower than those. The different spacing
with same plant populations did not affect growth and yield significantly, whereas Azolla growth during dual cropping was
8.3 and 64% more in the rectangular spacing than in the square spacing in Azolla basal plus Azolla dual twice incorporation
and Azolla dual twice incorporation treatments. 相似文献
3.
Summary Inoculation with root-nodule bacteria had favourable influence on N-uptake and yield of wheat. Since waterlogged root region of rice permits higher nitrogenase activity a pot culture experiment was conducted using same nine strains of rhizobia,Azotobacter chroococcum and bluegreen algae as inoculants.R. leguminosarum in combination with 50 kg N ha−1;R. japonicum and a strain of rhizobium isolated from moong bean increased the yield of paddy cv. Pusa-33. On the other hand an adverse effect of bacterial inoculation and of applied N was observed in case of Azotobacter, and rhizobia isolated from green gram, cicer, soyabean and clover. The importance of plant type, growth conditions and application of inorganic N in determining the success of plant-rhizobial associations is emphasised. 相似文献
4.
Summary Nitrogen fixation by strains of Azospirillum isolated from several rice soils and rice cultivars was investigated by15N2 incorporation and C2H2 reduction. C2H2 reducing ability markedly varied among the strains obtained from soils differing widely in their physico-chemical properties. Large variations in15N2 incorporation by Azospirillum isolated from the roots of several rice cultivars were also noticed. The present study reveals that rice cultivars harbour Azospirillum with differential N2-fixing ability and that plant genotype is of importance for optimal associations. 相似文献
5.
Summary Inoculation of water fernAzolla pinnata R. Brown (Bangkok isolate) at the rate of 500kg fresh weight ha−1 in rice fields at weekly intervals after planting in addition to 30 kg N ha−1 as urea showed a decrease in its growth and N2-fixation with delay in application. Use of Azolla up to 3 weeks after planting (WAP) during wet and 4 WAP during dry season
produced significantly more grain yield than 30 kg N ha−1, whereas its application upto one WAP produced more grain yield than 60 kg N ha−1. Grain yield with Azolla applied at the time of planting was similar to that of 60 kg N treatment during the wet season.
Higher grain yields in zero and one WAP Azolla treatments resulted due to increase in both number of panicles m−2 and number of grains/panicle while the subsequent Azolla inoculations increased grain yield mainly by producing more number
of grains/panicle.
Dry matter and total N yields at maturity of rice crop were more with Azolla application upto 3 WAP during wet and 2 WAP during
dry season while the reduction in sterility (%) was observed upto one WAP over 30 kg N ha−1 during both seasons. Number of tillers m−2 and dry matter production at maximum tillering and flowering were more than 30 kg N ha−1 with the use of Azolla upto one WAP. Increased grain N yield was observed with the use of Azolla upto 4 WAP during two seasons
whereas straw N yield increased upto one WAP during wet and 2 WAP during dry season. 相似文献
6.
Effect of rice plants on nitrification-denitrification loss of nitrogen under greenhouse conditions 总被引:1,自引:0,他引:1
Summary Rice is unique among cereal crops in its ability to tolerate the anaerobic environment of waterlogged soils, but little is known about the influence of these plants on nitrogen loss by nitrification-denitrification. This problem was approached by loss of urea-N in cores with and without rice plants, using the acetylene inhibition method. Considerably greater denitrification was observed for surface-applied urea as compared to subsurface application in all cases. Regardless of the application point, however, the planted system yielded greater N2O+N2 accumulation in the first two days than from the nonplanted soil. After 4–6 days from fertilization no difference was observed in denitrification loss between planted and nonplanted systems. Inorganic NH
4
+
levels were observed to decrease rapidly in planted soils. Initial enhancement of gaseous N accumulation may occur because of the oxidized rice-root rhizosphere, however the appreciable denitrification in non-planted soil suggests that other N loss mechanisms are more important than the losses occurring in the root rhizosphere. 相似文献
7.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen
fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline
in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1. 相似文献
8.
Rice (Oryza sativa L.) plantlets regenerated from callus (rice regenerants) were grownin vitro during the preparation stage either on a 1/4 strength N6 gellan gum (4 g l-1) medium without sucrose (SFM) or with 30 g l-1 sucrose (SCM), and under CO2 concentrations of 0.4, 2, 10, 50 or 100 mmol mol-1, a photoperiod of 24 h and a photosynthetic photon flux density (PPFD) of 125 mol m-2 s-1. Rice regenerants were also grownin vitro on SFM or SCM under CO2 concentration of 50 mmol mol-1, a photoperiod of 12 or 24 h and a PPFD of 80 or 125 mol m-2 s-1. All rice regenerants grew successfully on SFM under CO2 concentrations of 50 or 100 mmol mol-1. Increasing the CO2 concentration increased the survival percentage, shoot length and shoot and root dry weights of rice regenerants grown on SFM. Increasing CO2 concentration had no significant effect on the survival or growth of rice regenerants grown on SCM. Survival percentages of rice regenerants grown on SCM were less than 80% for each of the CO2 concentrations. A photoperiod of 24 h under CO2 enrichment improved the survival and growth of rice regenerants grown on SFM, and increased the survival percentage and shoot dry weight of rice regenerants grown on SCM. 相似文献
9.
Barraquio W. L. Daroy M. L. G. Tirol A. C. Ladha J. K. Watanabe I. 《Plant and Soil》1986,90(1-3):359-372
Summary A short-term laboratory acetylene reduction assay using cut plant-soil samples incubated in the dark was developed for measuring relative N2-fixing activities associated with field-grown rice plants. The assay sample consists of rhizosphere soil, root, and cut stem and leaf sheath. The cut plant-soil assay is relatively simple, rapid, and convenient; it reduces, if not eliminates, the problems encountered in whole-plant (field, pot, and water culture) and excised roots assays. Varietal differences in N2-fixing activity were detected with the new assay technique. 相似文献
10.
The secretion levels of momilactone A from rice (Oryza sativa L.) seedlings of eight cultivars into the rhizosphere were compared with the endogenous momilactone A concentrations in their shoots and roots. All rice cultivars contained momilactone A in the shoots and roots, and concentrations differed among the cultivars. Momilactone A was also found in all culture solutions in which the rice seedlings were grown, and the concentrations differed among the cultivars. The momilactone A concentrations in the culture solutions were reflected in the momilactone A concentrations in the shoots. These results suggest that all rice cultivars may produce momilactome A and secrete momilactone A into the culture solutions. The secretion levels of momilactone A may be more dependent on their capacities for momilactone A production in the shoots than on their capacities for momilactone A transportation from the shoots into the environment via the roots. As momilactone A acts as an antimicrobial and allelopathic agent, the secretion of momilactone A into the rice rhizosphere may provide a competitive advantage for root establishment through local suppression of soil microorganisms and inhibition of the growth of competing plant species. 相似文献
11.
T. Fujii Yi-De Huang A. Higashitani Y. Nishimura S. Iyama Y. Hirota T. Yoneyama R. A. Dixon 《Plant and Soil》1987,103(2):221-226
The influence ofKlebsiella oxytoca andEnterobacter cloacae inoculation on dinitrogen fixation by the rice-bacteria association was examined in pots in a greenhouse. For inoculation,K. oxytoca NG13 isolated from a Japan paddy soil,E. cloacae E26 isolated from a China soil and following three strains were employed.K. oxytoca NG1389 is a mutant from NG13 and has no nitrogenase activity (nif). K. oxytoca NG13/pMC71A andE. cloacae E26/pMC71A were produced by inserting anif A containingK. pneumoniae plasmid (pMC71A) to NG13 and E26, respectively. These two strains were able to fix dinitrogen fixation in the presence of
ammonium, whereas nitrogenase activity of wild strains (NG13 and E26) were repressed under this condition.
Inoculation effects were tested on two rice (Oryza sativa L.) varieties, a Indica type C5444 and a Japonica type T65. Rice seedlings were planted to nonsterilized potted soil, and
grown under flooded conditions. Upon inoculation with NG13 and E26, growth and N increment of plants particularly in T65 were
stimulated above NG1389 inoculated plants. Assay by15N dilution and acetylene reduction techniques indicated that this N increment may be due to fixed N. Inoculation with NG13/pMC71A
and E26/pMC71A resulted in more dry weight and fixed N than those of NG13 and E26 inoculated plants.
Dr Y. Hirota died on 23 December 1986. 相似文献
12.
13.
Osmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings 总被引:1,自引:0,他引:1
The changes in activity of peroxidase (POD) extracted from the cellwalls and the level of H2O2 in rice seedling rootstreatedwith mannitol and their correlation with root growth were investigated.Increasing concentrations of mannitol from 92 to 276 mM, which isiso-osmotic with 50 to 150 mM NaCl, progressively reduced rootgrowth and increased POD activities extracted from the cell walls of riceroots.The reduction of growth was also correlated with an increase inH2O2 level. Both diamine oxidase (DAO) and NADHperoxidase(NADH-POD) are known to be responsible for the generation ofH2O2. Mannitol treatment increased DAO but not NADH-PODactivities in roots of rice seedlings, suggesting that DAO contributes to thegeneration of H2O2 in the cell walls of mannitol-treatedroots. An increase in the level of H2O2 and the activityof POD extracted from the cell walls of rice roots preceded root growthreduction caused by mannitol. An increase in DAO activity coincided with anincrease in H2O2 in roots caused by mannitol. Since DAOcatalyses the oxidation of putrescine, the demonstration that mannitolincreasesthe activity of DAO in roots is consistent with those that mannitol decreasesthe level of putrescine. In conclusion, cell-wall stiffening catalysed by PODispossibly involved in the regulation of root growth reduction caused bymannitol. 相似文献
14.
Summary
Oryza sativa grown in flooded soil were transferred to water culture solution and acetylene reduction activities (ARA) of intact plants and rootless plants were measured for 5 h. Relative rate of ARA associated with the rootless wetland rice plant as compared with an intact plant varied from 8 to 100 percent, depending on the growth stage and varieties of rice and highest at the early stage (3 weeks after transplanting) for all varieties tested (IR26, Latisail, Khao Lo, and JBS236). ARA of shoots was associated with basal parts of the shoots about 3 cm from the base of wetland cultivated rice andOryza australiensis. Phyllospheric ARA was negligible except for senescent outer leaf sheaths. Microaerophilic N2-fixing bacteria also inhabited basal parts of shoots (outer leaf sheaths and stems) of wetland rice. These findings suggest that N2-fixation is partly associated with the shoots of wetland rice plants. 相似文献
15.
G. Trolldenier 《Plant and Soil》1982,68(2):217-222
Summary The relation of nitrogenase activity (ethylene evolution) to soil temperature or incubation temperature of roots was determined
on two genera of swamp plants, namely rice (Oryza sativa) cultivated in tropical climate and reed (Phragmites communis) grown in temperate regions. For both intact rice plants and excised rice roots the optimum temperature was 35°C. On excised
roots nitrogenase activity responded more sensitivity to changes in temperature. In contrast to intact rice plants no ethylene
evolution occurred on excised roots at 17 and 44°C. On reed roots temperature optimum was between 26 and 30°C which is clearly
lower than on rice (35°C). The temperature range in which nitrogen fixation occurred was, however, similar to that of rice,
although on a lower level. The results suggest a higher potential of the tropics for associative N2 fixation, while in cooler climates the lower temperatures appear to be a major limiting factor. 相似文献
16.
Ko JH Kim BG Kim JH Kim H Lim CE Lim J Lee C Lim Y Ahn JH 《Journal of plant physiology》2008,165(4):435-444
Four UDP-dependent glucosyltransferase (UGT) genes, UGT706C1, UGT706D1, UGT707A3, and UGT709A4 were cloned from rice, expressed in Escherichia coli, and purified to homogeneity. In order to find out whether these enzymes could use flavonoids as glucose acceptors, apigenin, daidzein, genistein, kaempferol, luteolin, naringenin, and quercetin were used as potential glucose acceptors. UGT706C1 and UGT707A3 could use kaempferol and quercetin as glucose acceptors and the major glycosylation position was the hydroxyl group of carbon 3 based on the comparison of HPLC retention times, UV spectra, and NMR spectra with those of corresponding authentic flavonoid 3-O-glucosides. On the other hand, UGT709A4 only used the isoflavonoids genistein and daidzein and transferred glucose onto 7-hydroxyl group. In addition, UGT706D1 used a broad range of flavonoids including flavone, flavanone, flavonol, and isoflavone, and produced at least two products with glycosylation at different hydroxyl groups. Based on their substrate preferences and the flavonoids present in rice, the in vivo function of UGT706C1, UGT706D1, and UGT707A3 is most likely the biosynthesis of kaempferol and quercetin glucosides. 相似文献
17.
Secondary plant metabolites undergo several modification reactions, including glycosylation. Glycosylation, which is mediated by UDP-glycosyltransferase (UGT), plays a role in the storage of secondary metabolites and in defending plants against stress. In this study, we cloned one of the glycosyltransferases from rice, RUGT-5 resulting in 40–42% sequence homology with UGTs from other plants. RUGT-5 was functionally expressed as a glutathione S-transferase fusion protein in Escherichia coli and was then purified. Eight different flavonoids were used as tentative substrates. HPLC profiling of reaction products displayed at least two peaks. Glycosylation positions were located at the hydroxyl groups at C-3, C-7 or C-4′ flavonoid positions. The most efficient substrate was kaempferol, followed by apigenin, genistein and luteolin, in that order. According to in vitro results and the composition of rice flavonoids the in vivo substrate of RUGT-5 was predicted to be kaempferol or apigenin. To our knowledge, this is the first time that the function of a rice UGT has been characterized. 相似文献
18.
Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl 总被引:7,自引:0,他引:7
The effects of NaCl on changes in ammonium level and enzyme activities of ammonium assimilation in roots growth of rice (Oryza sativa L.) seedlings were investigated. NaCl was effective in inhibiting root growth and stimulated the accumulation of ammonium in roots. Accumulation of ammonium in roots preceded inhibition of root growth caused by NaCl. Both effects caused by NaCl are reversible. Exogenous ammonium chloride and methionine sulfoximine (MSO), which caused ammonium accumulation in roots, inhibited root growth of rice seedlings. NaCl decreased glutamine synthetase and glutamate synthase activities in roots, but increased glutamate dehydrogenase activity. The growth inhibition of roots by NaCl or MSO could be reversed by the addition of L-glutamic acid or L-glutamine. The current results suggest that disturbance of ammonium assimilation in roots may be involved in regulating root growth reduction caused by NaCl.Abbreviations GDH
glutamate dehydrogenase
- GOGAT
glutamate synthase
- GS
glutamine synthetase
- MSO
methionine sulfoximine 相似文献
19.
Nitrogenase activity (acetylene reduction activity) was found to occur universally in the Cyperus papyrus swamp in Lake Naivasha. Low rates of acetylene reduction activity (0.9–104.9 nmol C2H4 g d.wt. roots-1 h-1) were associated with excised roots of C. papyrus but higher rates of activity (89.0–280.4 nmol C2H4 g d.wt. roots-1 h-1) were associated with intact root systems of the plant. It was estimated that nitrogen fixation associated with young roots
alone could supply about 26% of the nitrogen requirements of growing papyrus plants. Acetylene reduction activity in the lake
bottom sediments was generally low and associated with adjacent papyrus stands. Plate counts of putative aerobic and facultatively
anaerobic N2-fixing bacteria associated with papyrus roots showed the presence of high numbers of diazotrophs (5.4 × 106 CFU g d.wt. roots-1). Fewer numbers of N2-fixing bacteria were detected in the sediments (1.9 × 103-3.2 × 104 CFU g d.wt. sediment-1). 相似文献
20.
Climatic and soil factors are limiting rice growth in many countries. In Vietnam, a steep gradient of temperature is observed from the North to the South, and acid sulphate soils are frequently devoted to rice production. We have therefore attempted to understand how temperature affects rice growth in these problem soils, by comparison with rice grown in nutrient solution. Two varieties of rice, IR64 and X2, were cultivated in phytotrons at 19/21°C and 28/32°C (day/night) for 56 days, after 3 weeks preculture in optimal conditions. Two soils from the Mekong Delta were tested. Parallel with the growing experiments, these two soils were incubated in order to monitor redox potential (E
h
), pH, soluble Al and Fe, soluble, and available P. Tillering retardation at 20°C compared to 30°C was similar in nutrient solutions and in soils. The effect of temperature on increasing plant biomass was more marked in solutions than in soils. The P concentrations in roots and shoots were higher at 20°C than at 30°C, to such an extent that detrimental effect was suspected in plants grown in solution at the lowest temperature. The translocation of Fe from roots to shoots was stimulated upon rising temperature, both in solutions and in soils. This led to plant death on the most acid soil at 30°C. Indeed, the accumulation of Fe in plants grown on soils was enhanced by the release of Fe2+ due to reduction of Fe(III)-oxihydroxides. Severe reducing conditions were created at 30°C: redox potential (E
h
) dropped rapidly down to about 0 V. At 20°C, E
h
did not drop below about 0.2 V, which is a value well in the range of Fe(III)/Fe(II) buffering. Parallel to E
h
drop, pH increased up to about 6–6.5 at 30°C, which prevented plants from Al toxicity, even in the most acid soil. Phosphate behavior was obviously related to Fe-dynamics: more reducing conditions at 30°C have resulted in enhancement of available P, especially in the most acid soil. 相似文献