首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The involvement of the mitogen-activated protein kinase c-Jun NH2-terminal kinase-1 (JNK1) has never been investigated in hemostasis and thrombosis. Using two JNK inhibitors (SP600125 and 6o), we have demonstrated that JNK1 is involved in collagen-induced platelet aggregation dependent on ADP. In these conditions, JNK1 activation requires the coordinated signaling pathways of collagen receptors (alpha2beta1 and glycoprotein (GP)VI) and ADP. In contrast, JNK1 is not required for platelet adhesion on a collagen matrix in static or blood flow conditions (300-1500 s(-1)) involving collagen receptors (alpha2beta1 and GPVI). Importantly, at 1500 s(-1), JNK1 acts on thrombus formation on a collagen matrix dependent on GPIb-von Willebrand factor (vWF) interaction but not ADP receptor activation. This is confirmed by the involvement of JNK1 in shear-induced platelet aggregation at 4000 s(-1). We also provide evidence during rolling and adhesion of platelets to vWF that platelet GPIb-vWF interaction triggers alphaIIbbeta3 activation in a JNK1-dependent manner. This was confirmed with a Glanzmann thrombastenic patient lacking alphaIIbbeta3. Finally, in vivo, JNK1 is involved in arterial but not in venular thrombosis in mice. Overall, our in vitro studies define a new role of JNK1 in thrombus formation in flowing blood that is relevant to thrombus development in vivo.  相似文献   

2.
The CD5 lymphocyte surface glycoprotein is a coreceptor involved in the modulation of Ag-specific receptor-mediated activation and differentiation signals. The molecular basis for its modulatory properties is not yet well understood. In the present study we describe early biochemical events triggered by CD5 stimulation, which include the phosphatidylcholine-specific phospholipase C (PC-PLC)-dependent activation of acidic sphingomyelinase (A-SMase) in normal and lymphoblastoid T and B cells. The functional coupling of PC-PLC and A-SMase is demonstrated by the abrogation of A-SMase activation by 1) xanthogenate tricyclodecan-9-yl (D609), a selective inhibitor of PC-PLC, and 2) replacement of several C-terminal serine residues (S458, S459, and S461) present in the cytoplasmic tail of CD5 that are known to be critical for PC-PLC activation. Additionally, we demonstrate that activation of protein kinase C-zeta (PKC-zeta) and members of the mitogen-activated protein kinase (MAPK) cascade (MAPK kinase and c-Jun NH2-terminal kinase), but not the NF-kappaB, are downstream events of the CD5 signaling pathway. A-SMase, PKC-zeta, and MAPK family members are key mediators of cell responses as diverse as proliferation, differentiation, and growth arrest and may contribute to CD5-mediated modulation of TCR or BCR signaling.  相似文献   

3.
Smooth muscle of the gut undergoes rhythmic cycles of contraction and relaxation. Various constituents in the pathways that mediate muscle contraction could act to cross-regulate cAMP or cGMP levels and terminate subsequent relaxation. We have previously shown that cAMP levels are regulated by PKA-mediated phosphorylation of cAMP-specific phosphodiesterase 3A (PDE3A) and PDE4D5; the latter is the only PDE4D isoform expressed in smooth muscle. In the present study we have elucidated a mechanism whereby cholecystokinin (CCK) and, presumably, other contractile agonists capable of activating PKC can cross-regulate cAMP levels. Forskolin stimulated PDE4D5 phosphorylation and PDE4D5 activity. CCK significantly increased forskolin-stimulated PDE4D5 phosphorylation and activity and attenuated forskolin-stimulated cAMP levels. The effect of CCK on forskolin-induced PDE4D5 phosphorylation and activity and on cAMP levels was blocked by the inhibitors of PLC or PKC and in cultured muscle cells by the expression of Galpha(q) minigene. The effects of CCK on PDE4D5 phosphorylation, PDE4D5 activity, and cAMP levels were mimicked by low (1 nM) concentrations of okadaic acid, but not by a low (10 nM) concentration of tautomycin, suggesting involvement of PP2A. Purified catalytic subunit of PP2A but not PP1 dephosphorylated PDE4D5 in vitro. Coimmunoprecipitation studies demonstrated association of PDE4D5 with PP2A and the association was decreased by the activation of PKC. In conclusion, cAMP levels are cross-regulated by contractile agonists via a mechanism that involves PLC-beta-dependent, PKC-mediated inhibition of PP2A activity that leads to increase in PDE4D5 phosphorylation and activity and inhibition of cAMP levels.  相似文献   

4.
5.
Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.  相似文献   

6.
Multiple families of cyclic nucleotide phosphodiesterases (PDE) have been described, and the regulated expression of these genes in cells is complex. Although cAMP is known to control the expression of certain PDE in cells, presumably reflecting a system of feedback on cAMP signaling, relatively little is known about the influence of non-cAMP signaling systems on PDE expression. In this study, we describe a novel mechanism by which activators of the protein kinase C (PKC)-Raf-MEK-ERK cascade regulate phosphodiesterase 4D (PDE4D) expression in vascular smooth muscle cells (VSMC) and assess the functional consequences of this effect. Whereas a prolonged elevation of cAMP in VSMC resulted in a protein kinase A (PKA)-dependent induction of expression of two PDE4D variants (PDE4D1 and PDE4D2), simultaneous activation of both the cAMP-PKA and PKC-Raf-MEK-ERK signaling cascades blunted this cAMP-mediated increase in PDE4D expression. By using biochemical, molecular biological, and pharmacological approaches, we demonstrate that this PDE4D-selective effect of activators of the PKC-Raf-MEK-ERK cascade was mediated through a mechanism involving altered PDE4D mRNA stability and markedly attenuated the cAMP-mediated desensitization that results from prolonged activation of the cAMP signaling system in cells. The data are presented in the context of activators of the PKC-Raf-MEK-ERK cascade having both short and long term effects on PDE4D activity and expression in cells that may influence cAMP signaling.  相似文献   

7.
Transient global cerebral ischemia leads to delayed neuronal cell death in the hippocampal CA1, caudate putamen and neocortex. If preischemic hyperglycemia exists, the same duration of ischemia recruits additional brain structures, such as dentate gyrus to become damaged. The objective of the present study is to determine whether activation of mitogen-activated protein kinases (MAPKs) plays a role in hyperglycemia-mediated ischemic neuronal damage. Using phopho-specific antibodies against c-jun NH2-terminal kinase (JNK) and p38 MAPK, we studied activation of these two MAPKs in ischemia-vulnerable neocortex and ischemia-resistant dentate gyrus in rats subjected to 15 min of forebrain ischemia and followed by 0.5, 1 and 3 hr of recirculation under normo- and hyperglycemic conditions. The results showed that levels of phosphorylated JNK increased in both normo- and hyperglycemic brains following blood reperfusion for 0.5 hr and persisted up to 3 hr in the neocortex but not in the dentate gyrus, implying JNK may play a role in mediating neuronal cell death after ischemia. However, since hyperglycemia did not further increase phospho-JNK, JNK may not contribute to the detrimental effect of hyperglycemia on neuronal cell death. The amount of phospho-p38 was not altered by ischemia under both normo- and hyperglycemic conditions, suggesting that p38 MAPK may not play a major role in mediating neuronal damage in these two structures.  相似文献   

8.
9.
Splicing variants of type 4 phosphodiesterases (PDE4) are regulated by phosphorylation. In these proteins, a conserved region is located between the amino-terminal domain, which is the target for phosphorylation, and the catalytic domain. Previous studies have indicated that nested deletions encompassing this region cause an increase in catalytic activity, suggesting this domain exerts an inhibitory constraint on catalysis. Here, we have further investigated the presence and function of this domain. A time-dependent increase in hydrolytic activity was observed when PDE4D3 from FRTL-5 cells was incubated with the endoproteinase Lys-C. The activation was abolished by protease inhibitors and was absent when a phosphorylated enzyme was used. Western blot analysis with PDE4D-specific antibodies indicated the Lys-C treatment separates the catalytic domain of PDE4D3 from the inhibitory domain. Incubation with antibodies recognizing an epitope within this domain caused a 3- to 4-fold increase in activity of native or recombinant PDE4D3. Again, PDE activation by these antibodies had properties similar to, and not additive with, the activation by protein kinase A phosphorylation. An interaction between the inhibitory domain and both regulatory and catalytic domains of PDE4D3 was detected by the yeast two-hybrid system. Mutations of Ser54 to Ala in the regulatory domain decreased or abolished this interaction, whereas mutations of Ser54 to the negatively charged Asp strengthened it. These data strongly support the hypothesis that an inhibitory domain is present in PDE4D and that phosphorylation of the regulatory domain causes activation of the enzyme by modulating the interaction between inhibitory and catalytic domains.  相似文献   

10.
11.
Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.  相似文献   

12.
In this study, we describe a novel mechanism by which a protein kinase C (PKC)-mediated activation of the Raf-extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade regulates the activity and membrane targeting of members of the cyclic AMP-specific phosphodiesterase D family (PDE4D). Using a combination of pharmacological and biochemical approaches, we show that increases in intracellular cAMP cause a protein kinase A-mediated phosphorylation and activation of the two PDE4D variants expressed in vascular smooth muscle cells, namely PDE4D3 and PDE4D5. In addition, we show that stimulation of PKC via the associated activation of the Raf-MEK-ERK cascade results in the phosphorylation and activation of PDE4D3 in these cells. Furthermore, our studies demonstrate that simultaneous activation of both the protein kinase A and PKC-Raf-MEK-ERK pathways allows for a coordinated activation of PDE4D3 and for the translocation of the particulate PDE4D3 to the cytosolic fraction of these cells. These data are presented and discussed in the context of the activation of the Raf-MEK-ERK cascade acting to modulate the activation and subcellular targeting of PDE4D gene products mediated by cAMP.  相似文献   

13.
cAMP-specific PDE (phosphodiesterase) 4 isoforms underpin compartmentalized cAMP signalling in mammalian cells through targeting to specific signalling complexes. Their importance is apparent as PDE4 selective inhibitors exert profound anti-inflammatory effects and act as cognitive enhancers. The p38 MAPK (mitogen-activated protein kinase) signalling cascade is a key signal transduction pathway involved in the control of cellular immune, inflammatory and stress responses. In the present study, we show that PDE4A5 is phosphorylated at Ser147, within the regulatory UCR1 (ultraconserved region 1) domain conserved among PDE4 long isoforms, by MK2 (MAPK-activated protein kinase 2, also called MAPKAPK2). Phosphorylation by MK2, although not altering PDE4A5 activity, markedly attenuates PDE4A5 activation through phosphorylation by protein kinase A. This modification confers the amplification of intracellular cAMP accumulation in response to adenylate cyclase activation by attenuating a major desensitization system to cAMP. Such reprogramming of cAMP accumulation is recapitulated in wild-type primary macrophages, but not MK2/3-null macrophages. Phosphorylation by MK2 also triggers a conformational change in PDE4A5 that attenuates PDE4A5 interaction with proteins whose binding involves UCR2, such as DISC1 (disrupted in schizophrenia 1) and AIP (aryl hydrocarbon receptor-interacting protein), but not the UCR2-independent interacting scaffold protein β-arrestin. Long PDE4 isoforms thus provide a novel node for cross-talk between the cAMP and p38 MAPK signalling systems at the level of MK2.  相似文献   

14.
Expression of a c-Jun NH(2)-terminal protein kinase (JNK), also known as stress-activated protein kinase (SAPK) in rodents, has been implicated in the ability of cells to respond to a variety of stressors. In nonmammalian cells, JNK participates in the regulation of cell volume in response to hyperosmotic stress. To explore the possibility that JNK may participate in the transduction of osmotic information in mammals, we evaluated the expression of JNK immunoreactivity in neuroendocrine cells of the supraoptic nucleus. Low basal expression of JNK-2 (SAPK-alpha) and JNK-3 (SAPK-beta) was seen in vivo and in vitro. During water deprivation, JNK-2 increased in the supraoptic nucleus but not in the cortex. Osmotic or glutamate receptor stimulation in vitro also resulted in an increase in JNK-2 that was tetrodotoxin (TTX) insensitive and paralleled by increased nuclear phospho-c-Jun immunoreactivity. A TTX-sensitive increase in JNK-3 was seen in smaller neurons. Thus different JNK pathways may mediate individual cellular responses to osmotic stress, with JNK-2 linked to osmotic and glutamate receptor stimulation in magnocellular neuroendocrine cells.  相似文献   

15.
Although transport and subsequent translation of dendritic mRNA play an important role in neuronal synaptic plasticity, the underlying mechanisms for modulating dendritic mRNA transport are almost completely unknown. In this study, we identified and characterized an interaction between Staufen2 and mitogen-activated protein kinase (MAPK) with co-immunoprecipitation assays. Staufen2 utilized a docking (D) site to interact with ERK1/2; deleting the D-site decreased colocalization of Staufen2 with immunoreactive ERK1/2 in the cell body regions of cultured hippocampal neurons, and it reduced the amount of Staufen2-containing RNP complexes in the distal dendrites. In addition, the deletion completely abolished the depolarization-induced increase of Staufen2-containing RNP complexes. These results suggest that the MAPK pathway could modulate dendritic mRNA transport through its interaction with Staufen2.  相似文献   

16.
The mitogen-activated protein kinase (MAPK) cascade pathway plays an important role in regulating stress responses. The function of the c-Jun NH2-terminal kinase (JNK), a component of the MAPK cascade pathway, in Apis cerana cerana (Acc) remains unclear. Here, JNK was isolated and identified from Acc. Bioinformatics analyses revealed there is a typical serine/threonine protein kinase catalytic domain in the AccJNK protein. An expression profile analysis showed that AccJNK was significantly induced by pesticide treatments. To further explore the functional mechanisms of AccJNK, a yeast 2-hybrid screen was performed, activator protein-1 (AP-1) was screened as the interaction partner of AccJNK, and the interaction relationship was further verified by pull-down assay. Quantitative real-time polymerase chain reaction showed the expression pattern of AccAP-1 was similar to that of AccJNK. After a knockdown of AccJNK or AccAP-1 by RNA interference, the survival rate of Acc after pesticide treatments increased. Additionally, the expression levels of antioxidant-related genes and the activities of antioxidant enzymes increased, suggesting that the knockdown of AccJNK or AccAP-1 increased the antioxidant capacity of bees. Our study revealed that the JNK-mediated MAPK pathway responds to pesticide stress by altering the antioxidant capacity of Acc.  相似文献   

17.
18.
MKP-2 is a member of the dual-specificity phosphatase family that can dephosphorylate and inactivate mitogen-activated protein kinases (MAPKs). Although MKP-2 can be induced by ERK signaling, little is known about the regulation of MKP-2 at the post-translational level. Here we show that MKP-2 is phosphorylated by ERK and that such phosphorylation leads to stabilization of MKP-2 protein. Importantly, we find that MKP-2 can be phosphorylated on Ser386 and Ser391 at its C-terminus. Blockage of ERK activation results in enhanced proteasomal degradation of MKP-2 protein. Moreover, we find that phosphorylation has no effect on MKP-2 phosphatase activity. Taken together, these results illustrate an important post-translational regulation of MKP-2 protein as a feedback mechanism to control ERK activity.  相似文献   

19.
The cAMP-specific phosphodiesterase PDE4D5 can interact with the signalling scaffold proteins RACK (receptors for activated C-kinase) 1 and beta-arrestin. Two-hybrid and co-immunoprecipitation analyses showed that RACK1 and beta-arrestin interact with PDE4D5 in a mutually exclusive manner. Overlay studies with PDE4D5 scanning peptide array libraries showed that RACK1 and beta-arrestin interact at overlapping sites within the unique N-terminal region of PDE4D5 and at distinct sites within the conserved PDE4 catalytic domain. Screening scanning alanine substitution peptide arrays, coupled with mutagenesis and truncation studies, allowed definition of RACK1 and beta-arrestin interaction sites. Modelled on the PDE4D catalytic domain, these form distinct well-defined surface-exposed patches on helices-15-16, for RACK1, and helix-17 for beta-arrestin. siRNA (small interfering RNA)-mediated knockdown of RACK1 in HEK-293 (human embryonic kidney) B2 cells increased beta-arrestin-scaffolded PDE4D5 approx. 5-fold, increased PDE4D5 recruited to the beta2AR (beta2-adrenergic receptor) upon isoproterenol challenge approx. 4-fold and severely attenuated (approx. 4-5 fold) both isoproterenol-stimulated PKA (protein kinase A) phosphorylation of the beta2AR and activation of ERK (extracellular-signal-regulated kinase). The ability of a catalytically inactive form of PDE4D5 to exert a dominant negative effect in amplifying isoproterenol-stimulated ERK activation was ablated by a mutation that blocked the interaction of PDE4D5 with beta-arrestin. In the present study, we show that the signalling scaffold proteins RACK1 and beta-arrestin compete to sequester distinct 'pools' of PDE4D5. In this fashion, alterations in the level of RACK1 expression may act to modulate signal transduction mediated by the beta2AR.  相似文献   

20.
Here we report the presence of a protein kinase activity associated with human immunodeficiency virus type 1 (HIV-1) particles. We observed phosphorylation of five major proteins by the endogenous protein kinase activity. Phosphoamino acid analysis revealed phosphorylated serine and threonine residues. In addition, we observed autophosphorylation of two proteins in the presence of gamma-ATP in an in-gel phosphorylation assay. These two proteins are not linked by a disulfide bond, suggesting that two different protein kinases are associated with HIV-1 virions. Our results indicate the presence of ERK2 mitogen-activated protein kinase and of a 53,000-molecular-weight protein kinase associated with virions. Moreover, the use of different HIV strains derived from T cells and promonocytic cells, as well as the use of human T-cell leukemia virus type 1 particles, demonstrates that ERK2 is strongly associated with retrovirus particles in a cell-independent manner. Exogenous substrates, such as histone proteins, and a viral substrate, such as Gag protein, are phosphorylated by virus-associated protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号