首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CD45 is a transmembrane protein tyrosine phosphatase, which in mammals plays an important role in T and B cell receptor and cytokine signaling. Recently, a catfish cDNA was shown to contain all characteristic CD45 features: an alternatively spliced amino-terminus, a cysteine-rich region, three fibronectin domains, a transmembrane region, and two phosphotyrosine phosphatase domains. However, analyses of CD45 cDNAs from various catfish lymphoid cell lines demonstrated that catfish CD45 is unique in that it contains a large number of alternatively spliced exons. Sequence analyses of cDNAs derived from the catfish clonal B cell line 3B11 indicated that this cell line expresses up to 13 alternatively spliced exons. Furthermore, sequence similarity among the alternatively spliced exons suggested duplication events. To establish the exact number and organization of alternatively spliced exons, a bacterial artificial chromosome library was screened, and the catfish functional CD45 gene plus six CD45 pseudogenes were sequenced. The catfish functional CD45 gene spans 37 kb and contains 49 exons. In comparison, the human and pufferfish CD45 genes consist of 34 and 30 exons, respectively. This difference in the otherwise structurally conserved catfish gene is due to the presence of 18 alternatively spliced exons that were likely derived through several duplication events. In addition, duplication events were also likely involved in generating the six pseudogenes, truncated at the 3 ends. A similarly 3 truncated CD45 pseudogene is also present in the pufferfish genome, suggesting that this specific CD45 gene duplication occurred before catfish and pufferfish diverged (400 million years ago).  相似文献   

2.
Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells   总被引:19,自引:0,他引:19  
CD4+ murine T cell clones, TH1 and TH2, can be distinguished by both functional responses and by their patterns of lymphokine secretion. Recently, a mAb, 23G2, which reacts with a subset of CD45 molecules (CD45R), has been reported to bind differentially to clones of TH1 and TH2 cells. In the present study, normal splenic T cells were analyzed for differences in 23G2-reactivity and were separated into two populations based on their density of CD45R (CD45Rhi and CD45Rlo). The CD45Rhi cells secrete more IL-2 than IL-4 after stimulation in vitro; the reverse is true for the CD45Rlo cells. Because neither population secretes only IL-2 or IL-4, we were unable to classify cells as TH1 or TH2. In vivo and in vitro analyses of the CD45Rhi and CD45Rlo cells suggest a lineage relationship between the two subsets that correlates with the degree of Ag exposure and the state of maturation of the mice. In newborn mice and mice raised under sterile conditions, splenic CD4+ T cells are predominantly CD45Rhi. Under conditions of increased antigenic exposure and maturation of the mice, CD45Rlo cells develop; after long term priming in vivo, the majority of specific Ag-reactive cells are CD45Rlo. Adoptive transfer studies using BALB/c nu/nu recipients demonstrate that CD45Rhi cells become CD45Rlo cells and that the recall response (IgG) to specific Ag is mediated by CD45Rlo cells. Taken together, these data indicate that the level of expression of CD45R on CD4+ T cells distinguishes virgin (CD45Rhi) from primed/memory (CD45Rlo) T cells in normal mice.  相似文献   

3.
Murine CD4+ T cells can be separated into two distinct populations on the basis of their levels of expression of the CD45RB antigen (CD45Rhi and CD45Rlo). Murine CD45Rlo cells arise from CD45Rhi cells after antigenic exposure and provide antigen-specific help to B cells in a secondary immune response. In the present study, the ability of CD45Rhi and CD45Rlo cells to proliferate in response to either soluble antigen or allogeneic cells was examined by limiting dilution analysis. CD45Rhi cells were the major responding cells in unprimed animals; priming caused a large increase in the frequencies of responding CD45Rlo cells and this increase was evident 11 months later. These results further support the notion that CD4+ CD45Rlo cells are long-term memory cells.  相似文献   

4.
We have previously shown that Con A-induced suppressor T cells belong to the CD45RA+ subset. After unseparated T cells are activated with Con A, CD45RA expression increases to a maximum (Day 2), and then decreases significantly, but does not disappear entirely (Day 9), while CD29 expression increases steadily. In the present study, we examined the fate of these cell surface molecules on isolated CD4+CD45RA+ and CD4+CD45RA- cells following activation with Con A, and their relationship to the regulatory functions of these subsets. After activation of CD4+CD45RA+ cells with Con A, CD45RO and CD29 antigen expression rapidly increases (greater than 90%). While CD45RA expression is downregulated, approximately 40% of the cells continue to express low-density CD45RA in a stable fashion through Day 21. Despite these phenotypic changes, cells originally CD45RA+ continue to suppress IgG synthesis and provide only minimal B cell help. Furthermore, when cells originally CD45RA+ were sorted on the basis of continued presence, or loss of CD45RA antigen 14 days after activation, both populations demonstrated potent suppression and minimal help. In contrast, after activation with Con A, CD4+CD45A- cells maintain stable phenotype and provide significant help and minimal suppression. Immunoprecipitation of the CD45RA antigen from Day 14 activated CD4+CD45RA+ cells confirms the continued presence of the 205-kDa isoform, but reveals a significant decrease in the 220-kDa isoform. These results suggest that after activation with Con A, cells originally CD45RA+ remain functionally distinct from cells originally CD45RA-, and that CD45RA antigen persists on a subpopulation of CD45RA+ cells after activation with Con A.  相似文献   

5.
6.
It has been generally believed that human CD8+ memory cells are principally found within the CD45ROhigh population. There are high frequencies of CD8+ memory CTL specific for the human CMV tegument phosphoprotein pp65 in PBMC of long-term virus carriers; the large population of memory CTL specific for a given pp65 peptide contains individual CTL clones that have greatly expanded. In this study, we found high frequencies of pp65 peptide-specific memory CTL precursors in the CD45ROhighCD45RA- population, but also appreciable frequencies in the CD45RAhigh subpopulation. Because the majority of CD8+ T cells in PBMC are CD45RAhigh, more of the total pp65-specific memory CTL pool is within the CD45RAhigh than in the CD45ROhigh compartment. Using clonotypic oligonucleotide probes to quantify the size of individual pp65-specific CTL clones in vivo, we found the CD45RAhigh population contributed 6- to 10-fold more than the CD45ROhigh population to the total virus-specific clone size in CD8+ cells. During primary CMV infection, an individual virus-specific CTL clone was initially CD45ROhigh, but after resolution of infection this clone was detected in both the CD45ROhigh and the CD45RAhigh populations. We conclude that CD45RA+ human CD8+ T cells do not solely comprise naive cells, but contain a very significant proportion of memory cells, which can revert from the CD45ROhigh to CD45RAhigh phenotype in vivo.  相似文献   

7.
The CD45RA and CD45RO isoforms have been reported to define complementary subsets among CD4+ T cells: CD45RA CD4+ T cells are considered "virgin T cells" and CD45RO "primed T cells." We investigated the secretion of lymphokines by human CD4+ CD45RO and CD4+ CD45RA T helper cells after mitogen stimulation. CD45RA and CD45RO CD4+ T cells were isolated by negative immunoselection using magnetic beads. CD45RO cells, but not CD45RA cells, proliferate well in response to pokeweed mitogen (PWM) or insoluble anti-CD3. Both subpopulations produced interleukin (IL)-2, IL-6, and interferon (IFN)-gamma when stimulated with PWM for 1-4 days. Only Day 1 supernatants from CD45RO cells contained moderate amounts of IL-4. After 14 days of continuous culture and stimulation with PWM, the CD45RA subset had lost the expression of CD45RA and gained that of CD45RO. When long-term cultured CD45RA or CD45RO cells were treated with insoluble anti-CD3, they incorporated [3H]thymidine at similar levels, but only CD45RO cells secreted IL-4 and significantly increased their secretion of IFN-gamma. These data indicate that despite phenotype conversion, the two subpopulations maintain functional differences in the secretion of lymphokines, thus suggesting that circulating CD45RA and CD45RO cells may represent different lines of differentiation.  相似文献   

8.
9.
A series of nitroarylhydroxymethylphosphonic acids was synthesized and evaluated as inhibitors of CD45. It was discovered that both the alpha hydroxy and nitro groups are essential for activity. Potency is enhanced by the addition of a large lipophilic group on the aryl ring adjacent to the phosphonic acid moiety. Kinetics studies have shown that these compounds are competitive inhibitors and thus bind at the active site of this enzyme  相似文献   

10.
Functionally distinct subpopulations within the CD4+ subset of T lymphocytes have been described in man, rat, and mouse. In the rat different functions have been assigned to CD45R+ and CD45R- T helper cells. The CD45R+ in contrast to the CD45R- T helper cells have been reported to produce IL-2 and to proliferate well in response both to Con A and in MLR. In the present investigation the kinetics of the response to Con A by the CD45R+ and CD45R- rat T helper subsets have been analyzed. We confirm a strong proliferative response to Con A by CD4+CD45R+ rat T lymphocytes and also that they are the best IL-2 producers. We further demonstrate that CD4+CD45R- cells also produce IL-2, although in order to appreciate this production quantitatively by assays of the culture supernatants it was necessary to block IL-2 absorption by IL-2 receptor (IL-2R) antibodies. This blockage was of importance also in comparisons of the two subsets, since they showed different kinetics of IL-2R appearance. It is demonstrated that the CD4+CD45R- cells respond more rapidly to Con A than the CD4+CD45R+ cells as reflected by phenotypic conversion, IL-2 production, and proliferation. The fast response of the CD4+CD45R- T subset shown in the present study of rat cells and analogous studies of human cells suggests that the memory compartment of T cells besides other characteristics also has the capacity for a more rapid response than naive lymphocytes.  相似文献   

11.
We now report two healthy individuals whose T lymphocytes were over 95% positive for CD45RA antigen expression. However, these donors normally expressed both the CD29 high (CD29+) and CD45RO high (CD45RO+) antigens on approximately 40 and 50% of their CD4 cells, respectively. Despite the strong CD45RA expression on the surface of almost all CD4 cells, the CD29 marker allowed T cells from these donors to be divided phenotypically into subsets having distinct in vitro function. CD4+CD29+ cells from these donors responded maximally to recall antigens such as TT and provided strong helper function for B cell Ig synthesis. In contrast, CD4+CD29- cells responded poorly to recall antigens and had poor helper function for B cell Ig synthesis, but had strong suppressor activity. Thus, CD29 antigen expression was still predictive of the in vitro functional activity as previously described for normal donors. Furthermore, biochemical analysis of the distribution of individual CD45 isoforms on the surface of these subsets of CD4 cells revealed distinct differences. The CD4+CD29 high (CD4+CD29+) subset of cells primarily expressed the 180-, 190-, and 205-kDa CD45 isoforms, while the CD4+CD29 low (CD4+CD29-) cells primarily expressed the 190-, 205-, and 220-kDa CD45 isoforms. These results suggest that despite the superficial phenotypic similarity of CD4 cells in these donors, distinctions in the distribution of both CD29 and the 180- and 220-kDa CD45 isoforms exist and might play a role in the different functions of freshly isolated CD4 lymphocytes.  相似文献   

12.
The age-related decline in immune system functions is responsible for the increased prevalence of infectious diseases and the low efficacy of vaccination in elderly individuals. In particular, the number of peripheral naive T-cells declines throughout life and they exhibit severe functional defects at advanced age. However, we have recently identified a non-regulatory CD8+CD45RO+ CD25+ T-cell subset that occurs in a subgroup of healthy elderly individuals, who still exhibit an intact humoral immune response following influenza vaccination. Here, we demonstrate that CD8+CD45RO+CD25+ T-cells share phenotypic and functional characteristics with naive CD8+CD45RA+CD28+ T-cells from young individuals, despite their expression of CD45RO. CD8+CD45RO+ CD25+ T-cells also have long telomeres and upon antigenic challenge, they efficiently expand in vitro and differentiate into functional effector cells. The expanded population also maintains a diverse T-cell receptor repertoire. In conclusion, CD8+CD45RO+CD25+ T-cells from elderly individuals compensate for the loss of functional naive T-cells and may therefore be used as a marker of immunological competence in old age.  相似文献   

13.
The protein tyrosine phosphatase CD45 is expressed as a series of isoforms whose tissue and differentiation stage specificity is broadly conserved in evolution. CD45 has been shown to be an important regulator of a variety of functions in many different hemopoietic lineages. We have chosen an in vivo genetic complementation strategy to investigate the differential functions between isoforms. In this study, we report the characterization of transgenic mice which express the isoforms CD45RO or CD45RB as their only CD45 molecules, at a variety of expression levels and in the majority of hemopoietic lineages. Both CD45RO and CD45RB isoforms reconstitute thymocyte development in a CD45-null mouse background when expressed above a threshold level. The resulting mature T cells populate the peripheral lymphoid organs where they are found at normal frequency. Both CD45RO and CD45RB isoforms also permit T cell function in the periphery, although the threshold for normal function here appears to be set higher than in the thymus. In contrast, neither isoform is capable of fully restoring peripheral B cell maturation, even at levels approaching those in heterozygous CD45(+/-) mice in which maturation is normal. In vitro activation of B cells by Ag-receptor stimulation is only minimally complemented by these CD45RO and CD45RB transgenes. Our results suggest that CD45 isoforms play unique roles which differ between the T and B lineages.  相似文献   

14.
The CD45 (leucocyte common) antigen is a haemopoietic cell specific tyrosine phosphatase essential for antigen receptor signalling in lymphocytes, and expression of different CD45 isoforms is associated with distinct functions. Here we describe a novel polymorphism in exon 4 (A54G) of the gene encoding CD45 (PTPRC) that results in an amino acid substitution of Thr-19 to Ala in exon 4. The 54G allele was identified in African Ugandan populations and was found with a suggestive but not statistically significant increase in frequency amongst HIV-seropositive Ugandans. This suggests that the 54G variant and CD45 splicing abnormalities might be associated with HIV infection.  相似文献   

15.
To determine the effect of distinct activation stimuli on CD45 expression by B cells, we have examined the expression of CD45 molecules on murine B cells stimulated with LPS or the Th cell cytokine IL-5. Analysis of CD45 by flow cytometry revealed that unstimulated and stimulated B cells expressed homogeneous amounts of total CD45 but that stimulation with IL-5 resulted in a CD44hi, hyaluronate-adherent subpopulation of activated B cells that expressed a markedly altered pattern of expression of exon-specific CD45R or B220 determinants. The predominant CD45 immunoprecipitated from either unstimulated or LPS-stimulated B cells was of the high molecular mass form (approximately 220 kDa) usually associated with B cells. In contrast, the CD45 proteins immunoprecipitated from the hyaluronate-adherent subpopulation of IL-5-activated B cells were predominantly lower m.w. forms. PCR analysis of amplified CD45 cDNA also showed distinct expression profiles characteristic of each B cell population. The highest molecular size PCR product, corresponding to expression of all three variably expressed CD45 exons (A, B, and C) was prominent in resting B cells and in LPS-activated B cells but was selectively reduced in hyaluronate-adherent IL-5-activated B cells, where lower molecular size PCR products predominated, corresponding to expression of one or two of the variable exons. In contrast, LPS-activated B cells expressed reduced levels of these one- or two-exon forms. In addition, all B cell populations expressed a lower m.w. PCR product corresponding in size to the product expected when exons A, B, and C are spliced out of CD45 mRNA. Thus, analysis of alternative splicing of CD45 mRNA, as well as cell surface expression of CD45 provides a novel parameter for analysis of B cell activation by different stimuli.  相似文献   

16.
17.
Published reports indicate that CD45RO-CD45RAbright T cells are native T cells, CD45RObrightCD45RA- T cells are memory T cells, and that concomitant loss of CD45RA expression and gain of CD45RO expression occurs during transition from naive to memory status. Thus, following in vitro activation of CD45RO- CD45RAbright T cells, a subset of transitional CD45ROdimCD45RAdim T cells is observed before conversion to a CD45RObrightCD45RA- phenotype is completed. Interestingly, all three of these phenotypic subsets are represented in the circulating human lymphocyte pool. We thus used dual-color flow cytometry to phenotypically characterize CD45RObrightCD45RA-, CD45ROdimCD45RAdim, and CD45RO- CD45RAbright lymphocytes. Both the CD45RObrightCD45RA- and CD45ROdimCD45RAdim subsets consisted almost entirely of T cells, whereas the CD45RO-CD45RAbright subset contained T cells plus essentially all of the B and natural killer cells. Additional studies used three-color flow cytometry to assess activation markers on T cells within the three subsets defined by CD45RO/CD45RA expression. CD25 expression increased with conversion from naive to memory status (5% of CD45RO-CD45RAbright, 24% of CD45ROdimCD45RAdim, and 42% of CD45RObrightCD45RA- T cells), whereas CD38 expression decreased during conversion (76, 53, and 27%, respectively). We also assessed the fluorescent intensities of CD11a, CD2, and CD44, shown by others to be increased on memory, compared to naive T cells. Visual inspection of fluorescence cytograms confirmed these findings, and further showed that transitional T cells express these markers at levels indistinguishable from those for naive T cells. These findings suggest that acquisition of CD25 and loss of CD38 occur relatively early in the naive-to-memory transition process, being evident in the transitional cell subset. In contrast, increased expression of CD11a, CD2, and CD44 appear to represent late events, occurring after loss of CD45RA and gain of CD45RO has been completed.  相似文献   

18.
CD45 is a transmembrane molecule with phosphatase activity expressed in all nucleated haematopoietic cells and plays a major role in immune cells. It is a protein tyrosine phosphatase that is essential for antigen-receptor-mediated signal transduction by regulating Src family members that initiate TCR signaling. CD45 is being attributed a new emerging role as an apoptosis regulator. Cross-linking of the extracellular portion of the CD45 by monoclonal antibodies and by galectin-1, can induce apoptosis in T and B cells. Interestingly, this phosphatase has also been involved in nuclear apoptosis induced by mitochondrial perturbing agents. Furthermore, it is involved in apoptosis induced by HIV-1. CD45 defect is implicated in various diseases such as severe-combined immunodeficiency disease (SCID), acquired immunodeficiency syndrome (AIDS), lymphoma and multiple myelomas. The understanding of the mechanisms by which CD45 regulates apoptosis would be very useful in disease treatment.  相似文献   

19.
CD45, an abundant and highly glycosylated cell-surface protein, is a critical regulator of T-cell development. CD45 is differentially glycosylated throughout the life of a T cell, and the glycosylation state of CD45 controls recognition by various binding partners, affects intracellular signaling by the cytoplasmic tyrosine phosphatase domain and modulates the response of the T cell to antigen. Although the importance of CD45 during T-cell development has been established, it is becoming increasingly clear that glycosylation of CD45 is a dynamic process that modifies T-cell survival, activation and immune function. In this review, we address changes that occur in CD45 glycosylation during T-cell development and differentiation, describe carbohydrate-binding proteins that recognize differentially glycosylated forms of CD45, and discuss how differential glycosylation alters the T-cell response to a variety of signals involved in selection, activation and apoptosis.  相似文献   

20.
CD45 is known to have tyrosine phosphatase activity for signal transduction of T cells. Immunomodulation of CD45 has been tried to prevent T cell-mediated graft rejection in organ transplantation. In vitro study showed that blockade of CD45RB, an alternative splicing isoform of CD45, inhibited proliferative response of T cells after allogeneic stimulation. Treatment with a monoclonal antibody (mAb) against CD45RB induced long-term allograft acceptance in some mouse organ transplantation models. In a rat heart allograft model, a single injection of anti-rat CD45 (RT7) mAb which bound to allomorphic region of RT7 also induced allograft acceptance. CD45/RT7 is also a useful tool of targeting hematopoietic cells, because of the selective expression on all hematopoietic cells. There are two allomorphic forms of CD45 (RT7a and RT7b) in the rat. Using RT7 system, a rat heart allograft model from RT7a donors to RT7b recipients was designed to test functional relevance of graft-associated hematopoietic cells (microchimerism) to allograft acceptance. Then donor-derived hematopoietic cells were selectively depleted using anti-RT7a mAb in vivo. Depletion on day 0 prevented allograft acceptance and was associated with severe acute or chronic graft rejection, while depletion on day 18 after transplantation showed no effect. This experimental study showed a crucial role of microchimerism in induction phase of allograft acceptance. In conclusion, the CD45/RT7 system is not only a target molecule for tolerance induction, but also an useful tool for experimental models in transplantation immunology. In this review, we introduce basic properties of CD45 and recent results with manipulation of CD45.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号