首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hemipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one another. We found that the correlation was positive and statistically significant (R2 = 0.73, P = 0.01; Rs = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.  相似文献   

2.
Evolution of mitochondrial genes is far from clock-like. The substitution rate varies considerably between species, and there are many species that have a significantly increased rate with respect to their close relatives. There is also considerable variation among species in the rate of gene order rearrangement. Using a set of 55 complete arthropod mitochondrial genomes, we estimate the evolutionary distance from the common ancestor to each species using protein sequences, tRNA sequences, and breakpoint distances (a measure of the degree of genome rearrangement). All these distance measures are correlated. We use relative rate tests to compare pairs of related species in several animal phyla. In the majority of cases, the species with the more highly rearranged genome also has a significantly higher rate of sequence evolution. Species with higher amino acid substitution rates in mitochondria also have more variable amino acid composition in response to mutation pressure. We discuss the possible causes of variation in rates of sequence evolution and gene rearrangement among species and the possible reasons for the observed correlation between the two rates. [Reviewing Editor: Dr. David Pollock]  相似文献   

3.
Summary Mitochondrial genomes from yeasts in the Dekkera/Brettanomyces/Eeniella group vary in size from 28 to 101 kb. Mapping of genes has shown that the three smallest genomes, of 28–42 kb, have the same gene order, whereas the three larger mitochondrial DNAs of 57–101 kb are rearranged relative to the smaller molecules and between themselves. To examine the relationships between these genomes, a phylogenetic tree has been constructed by sequence comparison of the mitochondrialencoded cytochrome oxidase subunit gene (COX2) from the six species. Contrary to expectation, the tree shows that the larger rearranged genomes are more closely related than the smaller mtDNAs. This result indicates that the gene order of the smaller mtDNAs (28–42 kb) is ancestral and that larger mtDNA molecules (57–101 kb) are more prone to rearrangement than smaller forms.Offprint requests to: G.D. Clark-Walker  相似文献   

4.
5.
The nonsegmented negative-strand RNA viruses (order Mononegavirales) include many important human pathogens. The order of their genes, which is highly conserved, is the major determinant of the relative levels of gene expression, since genes that are close to the single promoter site at the 3' end of the viral genome are transcribed at higher levels than those that occupy more distal positions. We manipulated an infectious cDNA clone of the prototypic vesicular stomatitis virus (VSV) to rearrange three of the five viral genes, using an approach which left the viral nucleotide sequence otherwise unaltered. The central three genes in the gene order, which encode the phosphoprotein P, the matrix protein M, and the glycoprotein G, were rearranged into all six possible orders. Viable viruses were recovered from each of the rearranged cDNAs. The recovered viruses were examined for their levels of gene expression, growth potential in cell culture, and virulence in mice. Gene rearrangement changed the expression levels of the encoded proteins in concordance with their distance from the 3' promoter. Some of the viruses with rearranged genomes replicated as well or slightly better than wild-type virus in cultured cells, while others showed decreased replication. All of the viruses were lethal for mice, although the time to symptoms and death following inoculation varied. These data show that despite the highly conserved gene order of the Mononegavirales, gene rearrangement is not lethal or necessarily even detrimental to the virus. These findings suggest that the conservation of the gene order observed among the Mononegavirales may result from immobilization of the ancestral gene order due to the lack of a mechanism for homologous recombination in this group of viruses. As a consequence, gene rearrangement should be irreversible and provide an approach for constructing viruses with novel phenotypes.  相似文献   

6.
7.
DNA rearrangement of a homeobox gene in myeloid leukaemic cells.   总被引:24,自引:1,他引:23       下载免费PDF全文
C Blatt  D Aberdam  R Schwartz    L Sachs 《The EMBO journal》1988,7(13):4283-4290
A homeobox gene rearrangement has been detected in WEHI-3B mouse myeloid leukaemic cells. The rearranged gene was identified as Hox-2.4 which is a member of the Hox-2 gene cluster on mouse chromosome 11. Both the normal and the rearranged genes were cloned and analysed, and the rearranged genomic Hox-2.4 gene was sequenced. The results indicate that the rearrangement is due to insertion of an intracisternal A particle 5' upstream to Hox-2.4 and that this resulted in constitutive expression of the homeobox gene. It is suggested that constitutive expression of the homeobox gene may interrupt the normal development program in these leukaemic cells.  相似文献   

8.
9.

Background  

Genome rearrangements influence gene order and configuration of gene clusters in all genomes. Most land plant chloroplast DNAs (cpDNAs) share a highly conserved gene content and with notable exceptions, a largely co-linear gene order. Conserved gene orders may reflect a slow intrinsic rate of neutral chromosomal rearrangements, or selective constraint. It is unknown to what extent observed changes in gene order are random or adaptive. We investigate the influence of natural selection on gene order in association with increased rate of chromosomal rearrangement. We use a novel parametric bootstrap approach to test if directional selection is responsible for the clustering of functionally related genes observed in the highly rearranged chloroplast genome of the unicellular green alga Chlamydomonas reinhardtii, relative to ancestral chloroplast genomes.  相似文献   

10.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

11.
Recent evidence suggests that lymphocyte Ag receptor gene rearrangement does not always stop after the expression of the first productively rearranged receptor. Light chain gene rearrangement in B cells, and alpha-chain rearrangement in T cells can continue, which raises the question: how is allelic exclusion maintained, if at all, in the face of continued rearrangement? In this and the accompanying paper, we present comprehensive models of Ag receptor gene rearrangement and the interaction of this process with clonal selection. Our B cell model enables us to reconcile observations on the kappa:lambda ratio and on kappa allele usage, showing that B cell receptor gene rearrangement must be a highly ordered, rather than a random, process. We show that order is exhibited on three levels: a preference for rearranging kappa rather than lambda light chain genes; a preference to make secondary rearrangements on the allele that has already been rearranged, rather than choosing the location of the next rearrangement at random; and a sequentiality of J segment choice within each kappa allele. This order, combined with the stringency of negative selection, is shown to lead to effective allelic exclusion.  相似文献   

12.
Class Gastropoda includes a large number of described species, many with extensively rearranged mitochondrial genomes. We sequenced the mitogenome of the rock shell, Thais clavigera (Gastropoda: Muricidae), an intertidal snail, using long PCR with primers designed on the basis of expressed sequence tags. The mitogenome of T. clavigera consists of 2 rRNAs, 22 tRNAs, and 13 protein-coding genes, but no control region. Structural comparisons revealed that the order Sorbeoconcha, including T. clavigera, have nearly identical mitochondrial gene patterns. However, they have an inversion between a tRNAPhe–tRNAGlu cluster that comprises 21 genes, but most of the remaining structure is similar to the putative mollusk ground pattern. These findings will provide a better insight into mitochondrial gene rearrangement over the course of gastropod evolution.  相似文献   

13.
A transgenic immunoglobulin mu gene prevents rearrangement of endogenous genes   总被引:31,自引:0,他引:31  
Transgenic mice containing a microinjected rearranged immunoglobulin (Ig) mu heavy chain gene were examined for the effects on DNA rearrangement of the endogenous Ig genes. Abelson murine leukemia virus (A-MuLV) cell lines were isolated from pre-B cells of transgenic mice and of normal littermates. Microinjected mu gene RNA and a mu heavy chain protein were synthesized in every transgenic A-MuLV cell line. Only 10% of normal mouse A-MuLV transformants synthesized mu protein. A germ-line JH allele was observed in 40% of the transgenic lines, demonstrating that the block to endogenous Ig DNA rearrangement occurred at the first step of heavy chain DNA joining. All alleles were rearranged in normal mouse A-MuLV lines. Germline JH alleles were also detected in 10% of the transgenic hybridomas derived from proliferating B cells. Our results support a model of active prevention of rearrangement by the product of successfully rearranged mu genes.  相似文献   

14.
A human rotavirus (isolate M) with an atypical electropherotype with 14 apparent bands of double-stranded RNA was isolated from a chronically infected immunodeficient child. MA-104 cell culture adaptation showed that the M isolate was a mixture of viruses containing standard genes (M0) or rearranged genes: M1 (containing a rearranged gene 7) and M2 (containing rearranged genes 7 and 11). The rearranged gene 7 of virus M1 (gene 7R) was very unusual because it contained two complete open reading frames (ORF). Moreover, serial propagation of virus M1 in cell culture indicated that gene 7R rapidly evolved, leading to a virus with a deleted gene 7R (gene 7RDelta). Gene 7RDelta coded for a modified NSP3 protein (NSP3m) of 599 amino acids (aa) containing a repetition of aa 8 to 296. The virus M3 (containing gene 7RDelta) was not defective in cell culture and actually produced NSP3m. The rearranged gene 11 (gene 11R) had a more usual pattern, with a partial duplication leading to a normal ORF followed by a long 3' untranslated region. The rearrangement in gene 11R was almost identical to some of those previously described, suggesting that there is a hot spot for gene rearrangements at a specific location on the sequence. It has been suggested that in some cases the existence of short direct repeats could favor the occurrence of rearrangement at a specific site. The computer modeling of gene 7 and 11 mRNAs led us to propose a new mechanism for gene rearrangements in which secondary structures, besides short direct repeats, might facilitate and direct the transfer of the RNA polymerase from the 5' to the 3' end of the plus-strand RNA template during the replication step.  相似文献   

15.
Transformation of peripheral blood lymphocytes by co-incubation with EBV produces B lymphoblastoid cell lines, but rearrangement of TCR beta-chain genes was observed in three different cell lines derived from two individuals. Because rearrangement of TCR genes in B lymphocytes is considered a rare event, these B lymphoblastoid cell lines with rearranged TCR beta-genes were examined in detail to determine whether there were any additional characteristics to distinguish them from B lymphoblastoid cell lines with germ-line TCR beta-genes. All B lymphoblastoid cell lines contained rearranged Ig H and kappa L chain genes, secreted Ig, and expressed B and not T cell surface markers. Cell lines with rearranged TCR beta-genes had rearranged both IgH genes and had rearranged and subsequently deleted both kappa C region genes. Furthermore all three B lymphoblastoid cell lines with rearranged TCR beta-genes produced small amounts of Ig with lambda-L chains. Although the cellular mechanisms maintaining lineage-specific rearrangement events remain unknown, extensive Ig gene rearrangement and inefficient Ig production by B cells may be indicators of a cellular status where normally stringent lineage-specific control elements fail to function efficiently.  相似文献   

16.
In many myelomas more than one kappa gene is rearranged (2-5). We are reporting here the results of studies undertaken to determine whether all the rearranged genes are expressed. It was found that in the myeloma NS-1 three different rearranged kappa genes exist. In a subline of NS-1 and several hybridomas produced by fusion of mouse spleen cells with NS-1 it was found that production of NS-1 kappa chains was correlated with the presence of one of the three kappa genes. Loss of this "expressed" gene eliminated the synthesis of the NS-1 kappa chains, loss of one of the other two rearranged kappa genes did not. It is hypothesized, that allelic exclusion (20) of kappa genes generally operates by the functional rearrangement of one kappa gene; other rearrangements are relatively frequent, at least in myelomas, but mostly they are nonfunctional and thus scrambled antibody molecules do not arise.  相似文献   

17.
A TCR-beta minilocus in germline configuration (beta M) has previously been shown to undergo rearrangement and expression in transgenic mice. To study allelic exclusion of TCR miniloci, several beta M transgenic mouse lines were generated and crossed with mice transgenic for a functionally rearranged TCR V beta 2 gene (beta R). PCR analysis of beta M beta R double transgenic mice revealed almost complete suppression of endogenous TCR V beta gene rearrangements, but blockage of minilocus V beta rearrangements was achieved with only one of five minilocus transgenic lines. This result cannot be explained by copy number or arrangement of the multiple miniloci integrated. It appears that the minilocus is not autonomously regulated which suggests that sequences flanking the integration sites influence accessibility of the minilocus for rearrangement and allelic exclusion. However, although productively rearranged genes were formed in double transgenic mice, surface expression of minilocus-encoded beta chains was not detected. This indicates that allelic exclusion may operate at a level after gene rearrangement.  相似文献   

18.
19.
Most reported examples of change in vertebrate mitochondrial (mt) gene order could be explained by a tandem duplication followed by random loss of redundant genes (tandem duplication-random loss [TDRL] model). Under this model of evolution, independent loss of genes arising from a single duplication in an ancestral species are predicted, and remnant pseudogenes expected, intermediate states that may remain in rearranged genomes. However, evidence for this is rare and largely scattered across vertebrate lineages. Here, we report new derived mt gene orders in the vertebrate "WANCY" region of four closely related caecilian amphibians. The novel arrangements found in this genomic region (one of them is convergent with the derived arrangement of marsupials), presence of pseudogenes, and positions of intergenic spacers fully satisfy predictions from the TDRL model. Our results, together with comparative data for the available vertebrate complete mt genomes, provide further evidence that the WANCY genomic region is a hotspot for gene order rearrangements and support the view that TDRL is the dominant mechanism of gene order rearrangement in vertebrate mt genomes. Convergent gene rearrangements are not unlikely in hotspots of gene order rearrangement by TDRL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号