首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photobilirubin II, a stereoisomer of bilirubin, binds to human serum albumin at a single binding site (K = 2.2 x 10(6)M-1), presumably the high-affinity bilirubin-binding site. Binding in the secondary (class II) binding sites is of minor importance. The results are discussed with respect to photometabolism of bilirubin and as a possible source of error in the determination of bilirubin unbound to albumin.  相似文献   

2.
Light-absorption, c.d. and fluorescence of the bilirubin-albumin complex were investigated at extreme alkaline pH. Above pH 11.1 albumin binds the bilirubin molecule, twisted oppositely to the configuration at more neutral pH. On the basis of light-absorption it is shown that two alkaline transitions occur. The first alkaline transition takes place at pH between 11.3 and 11.8, co-operatively dissociating at least six protons. The second alkaline transition takes place at pH between 11.8 and 12.0. It probably implies a reversible unfolding of the albumin molecule, increasing the distance between tryptophan-214 and bilirubin, and partly exposing the liganded bilirubin to the solvent.  相似文献   

3.
1. The main perchlorosoluble fraction of rainbow trout serum has some physico-chemical characters kindred to those of human serum albumin (low molecular weight, solubility with ammonium sulfate, electrophoretic mobility, no glycoproteinic staining). 2. However, on account of obvious differences (heterogeneity and existence of various phenotypes, lack of bromophenol blue or bilirubin binding, low concentration, solubility in perchloric acid), the term "para-albumin" seems more suitable to name this compound. 3. The perchlorosoluble fraction binds hemoglobin causing an increase of peroxidasic activity. But, unlike to human haptoglobin, hemoglobin binding is partial, reversible and labile.  相似文献   

4.
Binding between human serum albumin and a spin-labelled derivative of bilirubin was investigated by circular dichroism, fluorescence quenching, electron spin resonance and visible spectroscopy. The orders of magnitude of the binding constants obtained by flurorescence quenching and electron spin resonance spectroscopies were 10(7) and 10(3) 1 . mol-1, respectively. These data suggest that most spin-labelled bilirubin interacts with human serum albumin at the side not holding the spin-labelled side-arm. CD measurements showed the presence of at least two sites, associated with opposite Cotton effects. It is worthy of note that the Cotton sign of the first site is inverted with respect to the corresponding one of bilirubin. CD measurements on mixed systems (spin-labelled bilirubin/human serum albumin/bilirubin) were also performed. The decomposition of the ternary curves shows that the rotatory power of bilirubin bound to human serum albumin is higher in the ternary system than in the binary (bilirubin/human serum albumin). The corresponding CD measurements for the binding between spin-labelled bilirubin and bovine serum albumin are also reported and discussed.  相似文献   

5.
Bilirubin binds to many sites in blood, the strongest binding being to a single site on albumin. Secondary sites on albumin, most sites on other plasma proteins, and sites on erythrocyte membranes have affinities for bilirubin that are at most one-hundredth as great. Bilirubin binds to hemoglobin in red cells with an effective affinity that is less than one-thousandth that of the primary albumin site. Essentially the only bilirubin present in blood which fluoresces is that bound to the primary albumin site. Almost all the other bilirubin in blood fluoresces with a yield no more than one-fiftieth as large. Quantitative fluorometry of whole blood is possible using the “front-face” technique. The concentration of bilirubin bound to the primary albumin site can be determined in this way. The albumin binding capacity of a blood specimen can be similarly assayed upon titration of the specimen with bilirubin. The nonionic detergent dodecyldimethylamine oxide (DDAO) scavenges bilirubin from all sites in blood, and, since bilirubin is fluorescent in DDAO micelles, the total blood bilirubin can be assayed fluorometrically after addition of DDAO to the specimen. This detergent method also allows facile assay of red-cell-bound bilirubin. These fluorometric assays for total blood bilirubin, albumin-bound bilirubin, and albumin binding capacity are simple and rapid and use very small volumes of blood. They should be of great value in the research on neonatal jaundice and in its clinical management.  相似文献   

6.
A label for the bilirubin binding sites of human serum albumin was synthesized by reacting 2 mol of Woodward's reagent K (N-ethyl-5-phenylisoxazolium-3'-sulfonate) with 1 mol of bilirubin. This yielded a water-soluble derivative in which both carboxyl groups of bilirubin were converted to reactive enol esters. Covalent labeling was achieved by reacting the label with human serum albumin under nitrogen at pH 9.4 and 20 degrees. Under the same conditions, no covalent binding to the monomers of several proteins could be demonstrated. The number of binding sites for bilirubin and the label were found to be the same, and competition experiments with bilirubin showed inhibition of covalent labeling. The absorption, fluorescence and CD spectra of the label in a complex with human serum albumin were similar to those of the bilirubin human serum albumin complex. However, following covalent attachment to the spectral properties were changed, indicating loss of conformational freedom of the chromophore. Labeling ratios were selected to result in the incorporation of less than 1 mol of label/mol of human serum albumin. Under these conditions, labeling is thought to occur primarily at the high affinity binding site.  相似文献   

7.
Cobinding of bilirubin and of haeme to human serum albumin was investigated by means of difference absorption spectroscopy and fluorescence spectroscopy. Two specific sites for bilirubin and two for haeme binding occur on the albumin molecule. The primary binding site for bilirubin (Ka = 2.5 microM-1) is different from the primary heame binding site (Ka = 50 microM-1; Beaven et al., Eur J. Biochem. 41, 539-546, 1974), the former, however, might be identical with the secondary center for haeme binding. Similarly, the primary haeme binding center might be identical with the secondary bilirubin binding site.  相似文献   

8.
The kinetics of haem binding to human serum albumin and haemopexin were studied by means of the stopped flow technique. The reaction could be divided into three kinetically clearly distinguished steps: (1) extremely fast reaction of haem with nonspecific binding sites on the surface of the apoprotein molecule; this type of haem binding site seems to exist in proteins in general; (2) by meaas of equilibrium with its monomer, haem is transferred to the specific binding site; this second order reaction takes about 1–2 s, the reaction rate constant amounts to ≈106 l mol?1 s?1 both for albumin and haemopexin: (3) conformational changes of haemoprotein molecule, accompanied by changes of absorption spectra in the Soret region; this series of slow monomolecular reactions takes about 20 min. These results are discussed in connection with the mechanism of haem transport from blood to liver cells.  相似文献   

9.
Although the interactions between bilirubin and serum albumin are among the most studied serum albumin-ligand interactions, the binding-site location and the participation of bilirubin-serum albumin complexes in pathological and physiological processes are under debate. In this article, we have benefited from the chiral structure of bilirubin and used CD spectroscopy to characterize the structure of bilirubin bound to human and bovine serum albumins. We determined that in a phosphate buffer at pH 7.8 there are three binding sites in both human and bovine serum albumins. While the primary binding sites in human and bovine serum albumins bind bilirubin with P- and M-helical conformations, respectively, the secondary binding sites in both albumins bind bilirubin in the P-helical conformation. We have shown that the bonding of bilirubin to the serum albumin matrix is a more favorable process than the self-association of bilirubin under the studied conditions, with a maximum of three bound bilirubins per serum albumin molecule. Although bilirubin bound to the primary binding site has attracted the most attention, the presented results have documented the impact of the secondary binding sites which are relevant in the displacement reactions between BR and drugs and in the phenomena where bilirubin plays antioxidant, antimutagenic, and anti-inflammatory roles. Chirality 00:000000, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The inhibitor of anion exchange 4,4''-dibenzoamido-2,2''-disulfonic stilbene (DBDS) binds to band 3, the anion transport protein in human red cell ghost membranes, and undergoes a large increase in fluorescence intensity when bound to band 3. Equilibrium binding studies performed in the absence of transportable anions show that DBDS binds to both a class of high-affinity (65 nM) and low-affinity (820 nM) sites with stoichiometry equivalent to 1.6 nmol/mg ghost protein for each site, which is consistent with one DBDS site on each band 3 monomer. The kinetics of DBDS binding were studied both by stopped-flow and temperature-jump experiments. The stopped-flow data indicate that DBDS binding to the apparent high-affinity site involves association with a low-affinity site (3 microM) followed by a slow (4 s-1) conformational change that locks the DBDS molecule in place. A detailed, quantitative fit of the temperature-jump data to several binding mechanisms supports a sequential-binding model, in which a first DBDS molecule binds to one monomer and induces a conformational change. A second DBDS molecule then binds to the second monomer. If the two monomers are assumed to be initially identical, thermodynamic characterization of the binding sites shows that the conformational change induces an interaction between the two monomers that modifies the characteristics of the second DBDS binding site.  相似文献   

11.
The interaction of Cibacron Blue F3G A-Sepharose 4B with several serum albumins was studied. Although all albumins used were fond to bind to this adsorbent, human serum albumin was bound to a far greater extent than were the others. From the results of competition experiments and n.m.r. studies of Cibacron Blue and/or bilirubin binding to human serum albumin it is proposed that the mechanism of the interaction between human serum albumin and cibacron Blue is consistent wit Cibacron Blue binding to bilirubin-binding sites. In contrast with these findings with human serum albumin, there is little or no interaction of Cibacron Blue and the bilirubin-binding sites of albumins from rabbit, horse, bovine or sheep sera, although some interaction occurs between Cibacron Blue and the fatty acid-binding sites of these proteins. Structural analogues of Cibacron Blue have been used to investigate the binding of albumins to these ligands.  相似文献   

12.
The unbound bilirubin concentration and the enzymatic rate of bilirubin degradation by bilirubin oxidase in bilirubin-serum albumin solutions have been investigated experimentally and theoretically. A stoichiometric bilirubin-serum albumin binding analysis shows that the unbound bilirubin concentration depends only on the molar ratio of the total bilirubin concentration to the total serum albumin concentration. From the theoretical analysis and the measured unbound bilirubin concentrations, serum albumin may be modelled as a molecule having two binding sites, primary and secondary, with stoichiometric equilibrium constants of K(1) = 6 x 10(7)M(-1) and K(2) = 4.5 x 10(6)M(-1), respectively. The rate of total bilirubin degradation in bilirubin-serum albumin mixtures is zero order. An immobilized bilirubin oxidase reactor model, which shows good agreement with experimental bilirubin conversions, is presented. At a flow rate of 1 mL/min with a 8-mL reactor volume, a 50% bilirubin conversion per pass was observed with an inlet bilirubin concentration of 350muM and a serum albumin concentration of 500muM.  相似文献   

13.
Calorimetric and Binding Dissections of HSA Upon Interaction with Bilirubin   总被引:1,自引:0,他引:1  
The interactions between bilirubin and human serum albumin (HSA) were studied by isothermal titration calorimetry (ITC) and UV–vis spectrophotometry at 27°C in 100 mM phosphate buffer pH 7.4 containing 1 mM EDTA. The biphasic shape of the HSA–bilirubin binding curve depicted the existence of two bilirubin binding sets on the HSA structure which had distinct binding interactions. Each binding set contained one or more bilirubin binding site. The first binding set at subdomain IIA included one binding site and had a more hydrophobic microenvironment than the other two binding sites in the second bilirubin binding set (subdomain IIIA). With our method of analysis, the calculated dissociation constant of the first binding site is 1.28×10−6 M and 4.80×10−4 M for the second and third binding sites. Here, the typical Boltzmann’s equation was used with a new approach to calculate the dissociation constants as well as the standard free energy changes for the HSA–bilirubin interactions. Interestingly, our calculations obtained using the Wyman binding potential theory confirmed that our analysis method had been correct (especially for the second binding phase). The molar extinction coefficient determined for the first bound bilirubin molecule depicted that the bilirubin molecules (in low concentrations) should interact with the nonpolar microenvironment of the first high affinity binding site. Binding of the bilirubin molecules to the first binding site was endothermic (ΔHo>0) and occurred through the large increase in the binding entropy established when the hydrophobic bilirubin molecules escaped from their surrounding polar water molecules and into the hydrophobic medium of the first binding site. On the other hand, the calculated molar extinction coefficient illustrated that the microenvironment of the second binding set (especially for the third binding site) was less hydrophobic than the first one but still more hydrophobic than the buffer medium. The binding of the third bilirubin molecule to the HSA molecule was established more through exothermic (electrostatic) interactions.  相似文献   

14.
Binding sites of bile acids on human serum albumin were studied using various probes: dansylsarcosine (site I probe), 7-anilinocoumarin-4-acetic acid (ACAA, site II probe), 5-dimethylaminonaphthelene-1-sulfonamide (DNSA, site III probe), cis-parinaric acid (probe for fatty acid binding site) and bilirubin. Bile acids competitively inhibited the binding of dansylsarcosine to human serum album whereas bile acids enhanced the binding of ACAA, DNSA, cis-parinaric acid and bilirubin. Considering the concentrations of bile acids required to inhibit the binding of dansylsarcosine to human serum albumin, the secondary binding site of bile acids may correspond to site I. Dissociation constants (Kd) of the primary binding sites of lithocholic and chenodeoxycholic acid to human serum albumin were approximately 0.2 and 4 μM, respectively, which was measured by equilibrium dialysis at 37° C. All the bile acids and their sulfates and glucuronides inhibited the binding of chenodeoxycholic acid to human serum albumin. Lithocholic and chenodeoxycholic acid and their sulfates and glucuronides exhibited more inhibition than cholic acid and its conjugates. In conclusion, bile acids may bind to a novel binding site on human serum albumin.  相似文献   

15.
The binding of biliverdin-IXα by human albumin and serum was quantitated, using three different binding techniques, to study the effects of biliverdin on bilirubin-albumin binding. The apparent equilibrium association constants (K ± SD) and binding capacities (n) of defatted albumin, pooled adult sera, and pooled umbilical cord sera for biliverdin are: K = 1.3 ± 2 × 106 −1, n = 1.00; K = 13.0 ± 3 × 106 −1, n = 0.90; and K = 6.8 ± 0.1 × 106 −1, n = 0.85, respectively. Although bilirubin binds at more than one albumin site, competitive studies showed that biliverdin binds only at the primary (highest affinity) bilirubin site. Sulfisoxazole, previously thought to compete with bilirubin for the primary binding site, was found to displace bilirubin from both primary and secondary bilirubin binding sites. Biliverdin, because of its specific binding and spectral characteristics, could be a useful probe for determining the capacity of the primary bilirubin-albumin binding site.  相似文献   

16.
Binding of bilirubin and of L-tryptophan to dansylated albumins was investigated. Dansylation of less than one lysine residue per molecule of albumin did not affect the bilirubin binding, but decreased the L-tryptophan binding, indicating that dansylation had taken place in or near the l-tryptophan-binding site. Native albumin and albumin-bilirubin 1:1 complex showed the same affinity for L-tryptophan. The results indicate that, although L-tryptophan and bilirubin are bound in the same region, perhaps in a common cavity of the albumin molecule, such a cavity is sufficiently large to contain both ligands.  相似文献   

17.
Fatty acid binding to plasma albumin.   总被引:41,自引:0,他引:41  
A review of the available information about fatty acid binding to plasma albumin is presented. Albumin is composed of a single polypeptide chain, folded so as to form three or four spherical units. The strong fatty acid binding sites probably are located in crevices between these spherical regions. The anionic form of the fatty acid binds to albumin. Most of the binding energy comes from nonpolar interactions between the fatty acid hydrocarbon chain and uncharged amino acid side chains that line the binding sites. The binding sites are somewhat pliable, and their configuration can adapt to fit the incoming fatty acid. Stepwise association constants for binding to human albumin of fatty acids containing 6-18 carbon atoms are presented. These data indicate that each mole of fatty acid binds with a different affinity and that the association constants for multiple binding diminish sequentially, i.e., kappa 1 greater than kappa 2 greater than kappa 3 greater ... greater kappan. Because of uncertainties concerning fatty acid association in aqueous solutions, the constants for the 14-18 carbon acids probably are not definitive. In the usual physiological concentration range, free fatty acids do not displace appreciable amounts of a second organic compound from albumin. Sensitive spectrophotometric analyses revealed, however, that even small increases in free fatty acid concentration alter the molecular interaction between human albumin and another organic compound.  相似文献   

18.
After a meal rich in plant products, dietary flavonols can be detected in plasma as serum albumin-bound conjugates. Flavonol–albumin binding is expected to modulate the bioavailability of flavonols. In this work, the binding of structurally different flavonoids to human and bovine serum albumins is investigated by fluorescence spectroscopy using three methods: the quenching of the albumin fluorescence, the enhancement of the flavonoid fluorescence, the quenching of the fluorescence of the quercetin–albumin complex by a second flavonoid. The latter method is extended to probes whose high-affinity binding sites are known to be located in one of the two major subdomains (warfarin and dansyl-l-asparagine for subdomain IIA, ibuprofen and diazepam for subdomain IIIA). Overall, flavonoids display moderate affinities for albumins (binding constants in the range 1–15×104 M−1), flavones and flavonols being most tightly bound. Glycosidation and sulfation could lower the affinity to albumin by one order of magnitude depending on the conjugation site. Despite multiple binding of both quercetin and site probes, it can be proposed that the binding of flavonols primarily takes place in subdomain IIA. Significant differences in affinity and binding location are observed for the highly homologous HSA and BSA.  相似文献   

19.
Three large fragments of human serum albumin were produced by peptic digestion of the native protein [Geisow & Beaven (1977) Biochem. J. 161, 619-625]. Fragment P44 represents residues 1-386 and fragments P29 and P31 represent residues 49-307 and residues 308-584 respectively of the albumin molecule. The large N-terminal fragment P44 has a similar percentage of alpha-helix to stored defatted albumin, although the alpha-helix content of all the fragments is significantly less than that of freshly prepared albumin. The fragment P44 appears to account for all the binding of the hydrophobic probe 8-anilinonaphthalene-1-sulphonate to albumin. N-Acetyl-L-tryptophan binds to this fragment and displaces one of the bound molecules of 8-anilinonaphthalene-1-sulphonate. Bilirubin binds to fragments P44 and P29, and the complexes show similar circular-dichroism spectra to that of the complex between bilirubin and whole albumin. These results are in agreement with affinity-labeling work on albumin with reactive ligands where substitution occurs in the N-terminal region of the molecule. The sharp conformational transitional transition in albumin which is observed between pH4 and 3.5 was absent from the fragments. This isomerization, usually called the N-F transition, probably occurs in intact albumin as a result of the unfolding or separation of the C-terminal third of the protein from the remainder of the molecule.  相似文献   

20.
The binding of pyridoxal 5'-phosphate to human serum albumin   总被引:1,自引:0,他引:1  
Most of the pyridoxal 5'-phosphate (PLP) in plasma is bound to protein, primarily albumin. Binding to protein is probably important in transporting PLP in the circulation and in regulating its metabolism. The binding of PLP to human serum albumin (HSA) was studied using absorption spectral analysis, equilibrium dialysis, and inhibition studies. The kinetics of the changes in the spectrum of PLP when mixed with an equimolar concentration of HSA at pH 7.4 followed a model for two-step consecutive binding with rate constants of 7.72 mM-1 min-1 and 0.088 min-1. The resulting PLP-HSA complex had absorption peaks at 338 and 414 nm and was reduced by potassium borohydride. The 414-nm peak is probably due to a protonated aldimine formed between PLP and HSA. The binding of PLP to bovine serum albumin (BSA) at equimolar concentrations at pH 7.4 occurred at about 10% the rate of its binding to HSA. The final PLP-BSA complex absorbed maximally at 334 nm and did not appear to be reduced with borohydride. Equilibrium dialysis of PLP and HSA indicated that there were more than one class of binding sites of HSA for PLP. There was one high affinity site with a dissociation constant of 8.7 microM and two or more other sites with dissociation constants of 90 microM or greater. PLP binding to HSA was inhibited by pyridoxal and 4-pyridoxic acid. It was not inhibited appreciably by inorganic phosphate or phosphorylated compounds. The binding of PLP to BSA was inhibited more than its binding to HSA by several compounds containing anionic groups. It is concluded that PLP binds differently to HSA than it does to BSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号