首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The intramolecular conformation of puromycin, a broad spectrum antiobiotic, in solution has been investigated by proton magnetic resonance (PMR) spectroscopy. A comparison of the proton chemical shift and proton-proton coupling constant data of puromycin with puromycin aminonucleoside suggests that puromycin in solution exists as an equilibrium blend of extended and folded conformers. These folded conformers are the result of flexibility around the Cα-Cβ bond of the aminoacyl segment of puromycin. One of the folded conformers predicted by PMR is in excellent agreement with the x-ray data.  相似文献   

2.
The solution conformation of a model hexapeptide Asp-Arg-Gly-Asp-Ser-Gly (DRGDSG) containing the RGD sequence has been studied in DMSO-d6 as well as in aqueous solution (H2O:D2O/90:10%) by 1H NMR spectroscopy. The unambiguous identification of spin systems of various amino acid residues and sequence specific assignment of all proton resonances was achieved by a combination of two dimensional COSY and NOESY experiments. The temperature coefficient data of the amide proton chemical shifts in conjunction with the vicinal coupling constants, i.e. 3JNH-C alpha H, NOESY and ROESY results indicate that the peptide in both the solvents exists in a blend of conformers with beta-sheet like extended backbone structure and folded conformations. The folded conformers do not appear to be stabilised by intramolecular hydrogen bonding. Our results are consistent with the flexibility of RGD segment observed in the NMR studies on the protein echistatin containing the RGD motif (references 23-25).  相似文献   

3.
Results of an extensive theoretical conformational analysis of the opiate pentapeptide Met5-enkephalin are compared to spectroscopic data. The comparison enables us to propose a consistent model for the conformational state of Met5-enkephalin in solution. The empirical energy calculations suggest that the molecule exists in aqueous solution in a small number of folded and extended families of conformers. The predominance of βII′-turns at the level of the glycine residues at positions 2 and 3 is the most significant characteristic of folded conformers. A highly populated conformer of Met5-enkephalin is shown to possess structural features in common with the very potent narcotic etonitazene.  相似文献   

4.
High-resolution proton spectra at 620 MHz of human angiotensin II (1-8), angiotensin II (1-7), and angiotensin II (1-6) have been obtained in aqueous solution at acidic pH, and in dimethylsulfoxide solution. Complete chemical shift assignments for all three angiotensin peptides were made based on two-dimensional (2D) correlated spectroscopy and 2D-CA-MELSPIN spectra. Based on the measured values of 3JHNCH, the pattern of observed transverse Overhauser effects, and side-chain coupling constants, it is concluded that all three analogues exist in H2O or DMSO-d6 as a mixture of conformers that is largely extended, with negligible content of folded structures, such as beta-turns, gamma-turns, or helix content. The results fit well with those of Nikiforovich et al.  相似文献   

5.
The self-association of puromycin has been studied using proton magnetic resonance spectroscopy. The concentration, temperature and pH dependence studies of the proton chemical shifts of the adenine protons indicate that puromycin in aqueous solution at pD 7.4 self associates predominantly through adenine-adenine interaction. At this pD, the amino group of the aminoacyl segment of puromycin has been demonstrated to exist in a equilibrium blend of protonated and non-protonated forms. At pD 2.6, PM is found to exist predominantly in the monomeric from in which the methyl groups of the 6N-dimethyladenine are found to be non-equivalent due to hindered rotation about the C6-N6 bond.  相似文献   

6.
Abstract

The self-association of puromycin has been studied using proton magnetic resonance spectroscopy. The concentration, temperature and pH dependence studies of the proton chemical shifts of the adenine protons indicate that puromycin in aqueous solution at pD 7.4 self associates predominantly through adenine-adenine interaction. At this pD, the amino group of the aminoacyl segment of puromycin has been demonstrated to exist in a equilibrium blend of protonated and non-protonated forms. At pD 2.6, PM is found to exist predominantly in the monomeric from in which the methyl groups of the 6N-dimethyladenine are found to be non-equivalent due to hindered rotation about the C6-N6 bond.  相似文献   

7.
Igor Tvaro&#x;ka 《Biopolymers》1982,21(9):1887-1897
The conformational equilibria of four β-maltose conformers have been studied theoretically in 12 solvents. The stability of the conformers in dilute solution has been compared by using the continuum reaction field method. The solvation energy consists of electrostatic, dispersion, and cavity terms, which have been determined from the calculated properties of β-maltose and physicochemical properties of solvents. The calculated population of four conformers significantly depends on the solvent (e.g., in dioxane, M1:M2:M3:M4 = 53.3: 20.3:17.7:8.7; in dimethyl sulfoxide, 40.1:21.8:22.8:15.3; and in water, 25.7:17.5:26.3:30.5) and was found to correlate with experimentally observed data. The results obtained indicate that the conformation adopted by β-maltose in the crystalline form is not the one preferred in solution. The roles of the individual contributions to the solvation energy have been analyzed. Based on the determined abundance of conformers, averaged residual optical activity and vicinal carbon–proton coupling constants have been calculated and discussed from the point of view of the solution behavior of β-maltose.  相似文献   

8.
To investigate the structural function of the C-terminal amide group of endomorphin-2 (EM2, H-Tyr-Pro-Phe-Phe-NH(2)), an endogenous micro-opioid receptor ligand, the solution conformations of EM2 and its C-terminal free acid (EM2OH, H-Tyr-Pro-Phe-Phe-OH) in TFE (trifluoroethanol), water (pH 2.7 and 5.2), and aqueous DPC (dodecylphosphocholine) micelles (pH 3.5 and 5.2) were investigated by the combination of 2D (1)H-NMR measurement and molecular modelling calculation. Both peptides were in equilibrium between the cis and trans rotamers around the Tyr--Pro w bond with population ratios of 1 : 1 to 1 : 2 in dimethyl sulfoxide, TFE and water, whereas they predominantly took the trans rotamer in DPC micelle, except in EM2OH at pH 5.2, which had a trans/cis rotamer ratio of 2 : 1. Fifty possible 3D conformers were generated for each peptide, taking different electronic states depending on the type of solvent and pH (neutral and monocationic forms for EM2, and zwitterionic and monocation forms for EM2OH) by the dynamical simulated annealing method, under the proton-proton distance constraints derived from the ROE cross-peak intensities. These conformers were then roughly classified into four groups of two open [reverse S (rS)- and numerical 7 (n7)-type] and two folded (F1- and F2-type) conformers according to the conformational pattern of the backbone structure. Most EM2 conformers in neutral (in TFE) and monocationic (in water and DPC micelles) forms adopted the open structure (mixture of major rS-type and minor n7-type conformers) despite the trans/cis rotamer form. On the other hand, the zwitterionic EM2OH in TFE, water and DPC micelles showed an increased population of F1- and F2-type folded conformers, the population of which varied depending on their electronic state and pH. Most of these folded conformers took an F1-type structure similar to that stabilized by an intramolecular hydrogen bond of (Tyr1)NH(3) (+)...COO(-)(Phe4), observed in its crystal structure. These results show that the substitution of a carboxyl group for the C-terminal amide group makes the peptide structure more flexible and leads to the ensemble of folded and open conformers. The conformational requirement of EM2 for binding to the micro-opioid receptor and the structural function of the C-terminal amide group are discussed on the basis of the present conformational features of EM2 and EM2OH and a possible model for binding to the micro-opioid receptor, constructed from the template structure of rhodopsin.  相似文献   

9.
SUMO proteins, a group of post-translational ubiquitin-like modifiers, have target enzymes (E1 and E2) like other ubiquitin-like modifiers, e.g., ubiquitin and NEDD8, but their physiological roles are quite different. In an effort to determine the characteristic molecular design of ubiquitin-like modifiers, we have investigated the structure of human SUMO-2 in solution not only in its basic folded state but also in its higher-energy state by utilizing standard and variable-pressure NMR spectroscopy, respectively. We have determined average coordinates of the basic folded conformer at ambient pressure, which gives a backbone structure almost identical with those of ubiquitin and NEDD8. We have further investigated conformational fluctuations in a wide conformational space using variable-pressure NMR spectroscopy in the range of 30-3 kbar, by which we find a low-populated ( approximately 2.5%) alternative conformer preferentially disordered in the enzyme-binding segment. The alternative conformer is structurally very close to but markedly different in equilibrium population from those for ubiquitin and NEDD8. These results support our notion that post-translational ubiquitin-like modifiers are evolutionarily designed for function both structurally and thermodynamically in their low-populated, high-energy conformers rather than in their basic folded conformers.  相似文献   

10.
Tuftsin, a natural linear tetrapeptide (Thr-Lys-Pro-Arg) of potential antitumor activity, has been studied in DMSO-d6 solution by 2D NMR spectroscopy. 1H and 13C spectra show the presence of two families of conformations characterized by a trans or cis Lys-Pro bond, respectively. The family of conformers containing the cis peptide bond is a mixture of extended structures as expected for a short linear peptide. On the contrary, the trans isomer appears to be a rigid, folded conformer, as indicated by crucial NOEs and by the exceptionally low temperature coefficient of Arg NH. Analysis of the solution data by means of energy calculations leads to a unique structure, characterized by a Lys-Pro inverse gamma-turn.  相似文献   

11.
Observations of proton nuclear Overhauser effects in the molecule Luteinizing Hormone-Releasing Hormone indicate that a high population of a particular set of conformers exists in water solution. The results can be interpreted as two distinct conformers in which the pGlu1 ring is in close proximity to aromatic residues further along the sequence of the linear structure. The observed nuclear Overhauser effects were in agreement with the enhancements calculated from models obtained by conformational energy calculations.  相似文献   

12.
Various S-substituted derivatives of the reduced low sulphur and high proteins from wool have been prepared in which the substituted group is hydrogen, carboxymethyl, carboxethyl, methyl, carbamidomethyl, cyanoethyl and aminoethyl. The proton magnetic resonance (PMR) spectra and gel filtration chromatography of these proteins have been examined in 8 M urea solution as a function of pH in order to determine conditions under which the proteins occur as random coils in solution with no evidence for the occurrence of non-covalent interactions. The PMR method described in an earlier paper (1) provides an easier and much more sensitive method for the observation of non-covalent interactions in random coil proteins than does the measurement of elution volumes in gel chromatography. The results obtained by both methods are consistent and show that the widest range of pH for which unfolding occurs in 8 M urea is obtained with the S-carboxymethyl, S-carboxyethyl, S-methyl and S-carbamidomethyl derivatives.  相似文献   

13.
Alan E. Tonelli 《Biopolymers》1978,17(5):1175-1179
Solution conformations of the cyclic pentapeptide plant-hormone malformin A, whose conformational freedom is constrained by an intramolecular disulfide bridge, are derived and presented here. The nmr and CD data of Ptak are used to place restrictions on the search for possible malformin A solution conformers of low energy. Only two distinct conformers were found to be consistent with Ptak's data. Both structures are characterized by an internally buried (solvent-shielded) D -Cys2 amide proton, a seven-membered (1–3)hydrogen bond between (N–H) and (O?C), and a disulfide bridge conformation with a P chirality as manifested in the nmr study by the temperature independence of the amide proton chemical shifts for the D -Cys2 and D -Leu4 residues and the negative sign of the long wavelength maximum in the CD spectrum, respectively. Inspection of space-filling molecular models of both structures indicates severe steric barriers to their rapid interconversion. Thus, it appears that only one of the two conformers may be present in solution. The difference in their calculated dipole moments (4.6 and 6.9D) suggests an experimental method for distinguishing between the two proposed solution structures.  相似文献   

14.
A systematic examination by 1H nuclear magnetic resonance of the population of beta-turn-containing conformers in several series of short linear peptides in water solution has demonstrated a dependence on amino acid sequence which has important implications for initiation of protein folding. The peptides consist of a number of variants of the sequence Tyr-Pro-Tyr-Asp, the trans isomer of which was previously shown to contain a reverse turn in water. Two-dimensional rotating-frame nuclear Overhauser effect spectroscopy provides unequivocal evidence that substantial populations of reverse turn conformations occur in water solutions of certain of these peptides. In the unfolded state, the peptides adopt predominantly extended chain (beta) conformations in water. It appears probable from the nuclear Overhauser effect connectivities observed that the reverse turns in the trans isomers are predominantly type II. The low temperature coefficient of the amide proton resonance of the residue at position 4 of the turn suggests the presence of an intramolecular hydrogen bond. The presence of the beta-turn conformation has been confirmed for certain peptides by circular dichroism measurements. Substitutions at positions 3 and 4 in the sequence Tyr-Pro-Tyr-Asp-Val can enhance or abolish the beta-turn population in the trans peptide isomers. The residue at position 3 of the turn is the primary determinant of its stability. A small amount of additional stabilization appears to result from an electrostatic interaction between the side-chain of residue 4 and the unblocked amino terminus. For peptides of the series Tyr-Pro-X-Asp-Val, where X represents all L-amino acid except Trp and Pro, the temperature coefficient of the Asp4 amide proton resonance provides a measure of the beta-turn population. The beta-turn populations in water solution measured in this way correlate with the beta-turn probabilities determined from protein crystal structures. This indicates that it is frequently the local amino acid sequence, rather than medium- to long-range interactions in the folded protein, that determines the beta-turn conformation in the folded state. Such sequences are excellent candidates for protein folding initiation sites. A high population of structured forms appears to be present in the cis isomer of certain of the peptides, as shown by a considerable increase in the proportion of the cis isomer and by measurement of nuclear Overhauser effects and 3JN alpha coupling constants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
In aqueous solutions of NAD(H), there is an equilibrium between two different conformations : a “folded” conformation in which adenine and nicotinamide are staked together and an “unfolded” conformation in which the two rings are without interaction.The folded conformation is the more stable in aqueous solution whereas in organic solution it is the unfolded one.As we have previously shown, the PMR spectra of Co2+—NAD(H) complexes may be related with the coenzyme conformation giving suggest to a new method for NAD(H) conformational analysis.The results of this method applied to methanol 2H2O and dioxane/2H2O solutions are reported in this paper: they are in good accordance with those of spectrofluorimetric analysis.  相似文献   

16.
The proton magnetic resonance (PMR) spectrum of acetyl-proline amide in D2O solution has been analysed by computer simulation. The spectra of the cis and the trans isomers have been separated and their PMR parameters (chemical shift and coupling constants) are given. Vicinal coupling constants of the pyrrolidine ring are interpreted by means of a Karplus zone relation. The chemical shift effect of the anisotropy of both peptide planes is considered. It follows that both isomers are puckered with Cgamma in an endo position, but the cis isomer is more rigid than the trans isomer, which moreover undergoes a small interconversion of the Cgamma and Cdelta atoms between two extreme spatial positions. The dihedral angle phi has different values in both isomers. Thus, the dihedral angle between the two peptide planes is smaller in the trans isomer than in the cis isomer.  相似文献   

17.
The 600 MHz proton n.m.r. spectra of (sarcosyl7)-oxytocin and (N-methylalanyl7) oxytocin in 2H2O solution have been recorded and completely assigned. In each case the spectrum indicates the presence of two slowly interconverting conformers, which are the cis-trans isomers about the peptide bond between residues six and seven. The trans isomer is energetically favored in both cases. When neurophysin is added to a solution of (N-methylalanyl7) oxytocin or (sacrosyl7)-oxytocin at pH 3.0, the proportion of minor conformer remains constant, indicating that the cis and trans conformers are equally tightly bound to the protein.  相似文献   

18.
In order to make clear the structural role of the C-terminal amide group of endomorphin-2 (EM2, H-Tyr-Pro-Phe-Phe-NH2), an endogenous mu-receptor ligand, in the biological function, the solution conformations of endomorphin-2 and its C-terminal free acid (EM2OH, H-Tyr-Pro-Phe-Phe-OH), studied using two-dimensional 1H NMR measurements and molecular modeling calculations, were compared. Both peptides were in equilibrium between the cis and trans isomers around the Tyr-Pro omega bond in a population ratio of approximately/= 1:2. The lack of significant temperature and concentration dependence of NH protons suggested that the NMR spectra reflected the conformational features of the respective molecules themselves. Fifty possible 3D structures for the each isomer were generated by the dynamical simulated annealing method under the proton-proton distance constraints derived from the ROE cross-peaks. These energy-minimized conformers, which were all in the phi torsion angles estimated from J(NHCalphaH) coupling constants within +/- 30 degrees, were then classified in groups one or two according to the folding backbone structures. All trans and cis EM2 conformers adopt an open conformation in which their extended backbone structures are twisted at the Pro2-Phe3 moiety. In contrast, the trans and cis conformers of EM2OH show conformational variation between the 'bow'-shaped extended and folded backbone structures, although the cis conformers of its zwitterionic form are refined into the folded structure of the close disposition of C- and N-terminal groups. These results indicate clearly that the substitution of carboxyl group for C-terminal amide group makes the peptide flexible. The conformational requirement for mu-receptor activation has been discussed based on the active form proposed for endomorphin-1 and by comparing conformational features of EM2 and EM2OH.  相似文献   

19.
20.
Abstract

Short di- and tripeptides such as Boc-LG-OEt, Boc-VG-OEt and Boc-VGG-OH, corresponding to abundant repetitive sequences in elastin, have been extensively studied both in solid state, by X-ray diffraction, and in solution by circular dicroism and nuclear magnetic resonance. Furthermore, theoretical procedures such as simulated annealing and molecular dynamics were also performed on these peptides.

In general, the results indicate that no one single structure (be folded or extended) could be representative for these sequences in the protein, but rather that a multiplicity of interconverting conformers, ranging from folded to extended structures, should be considered. In any case, these structures, e.g. β-turns, polyglycine II and β-conformations, are those previously suggested to participate to conformational equilibria of elastin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号