首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure is presented for the screening of 16 benzodiazepines and hypnotics in human hair by LC-MS/MS (alprazolam, 7-aminoclonazepam, 7-aminoflunitrazepam, bromazepam, clobazam, diazepam, lorazepam, lormetazepam, midazolam, nordiazepam, oxazepam, temazepam, tetrazepam, triazolam, zaleplon and zolpidem). The method involves decontamination of hair with methylene chloride, hair cut into small pieces, incubation of 20 mg in phosphate buffer (pH 8.4) in the presence of 1 ng diazepam-d5 used as internal standard, liquid-liquid extraction with diethyl ether/methylene chloride (10/90) and separation using liquid chromatography-tandem mass spectrometry. The limits of quantification for all benzodiazepines and hypnotics range from 0.5 to 5 pg/mg using a 20-mg hair sample. Linearity is observed from the limit of quantification of each compound to 200 pg/mg (r2 > 0.99). Coefficients of variation measured on six points and at two concentrations (10 and 50 pg/mg) range from 5 to 20% for all drugs but one. Extraction recovery, measured at the two same concentrations range from 32 to 76%. These results were found suitable to screen for 16 benzodiazepines in hair and detect them at very low concentrations, making this method suitable to monitor single dose.  相似文献   

2.
A gas chromatographic–mass spectrometric method was developed for the simultaneous analysis of 15 low-dosed benzodiazepines, both parent compounds and their corresponding metabolites, in human urine. The target compounds are alprazolam, -hydroxyalprazolam, 4-hydroxyalprazolam, flunitrazepam, 7-aminoflunitrazepam, desmethylflunitrazepam, flurazepam, hydroxyethylflurazepam, nitrogen-desalkylflurazepam, ketazolam, oxazepam, lormetazepam, lorazepam, triazolam and -hydroxytriazolam. Nitrogen-methylclonazepam is used as the internal standard. The urine sample preparation involves enzymatic hydrolysis of the conjugated metabolites with Helix pomatia β-glucuronidase for 1 h at 56°C followed by solid-phase extraction on a phenyl-type column. The extracted benzodiazepines are subsequently analyzed on a polydimethylsiloxane column using on-column injection to enhance sensitivity. The extraction efficiency exceeded 80% for all compounds except for oxazepam, lorazepam and 4-hydroxyalprazolam which had recoveries of about 60%. The LODs ranged from 13 to 30 ng/ml in the scan mode and from 1.0 to 1.7 ng/ml in the selected ion monitoring (SIM) mode. Linear calibration curves were obtained in the concentration ranges from 50 to 1000 ng/ml in the scan mode and from 5 to 100 ng/ml in the SIM mode. The within-day and day-to-day relative standard deviations at three different concentrations never exceeded 15%.  相似文献   

3.
A rapid twin-column gas chromatographic (GC) method for simultaneous screening and determination of commonly prescribed benzodiazepines and other new anxiolytics from plasma is described. Identical fused-silica Ultra 2 (5% phenyl methyl silicone) columns were connected to nitrogen—phosphorus and electron-capture detectors. The drugs were isolated from 1 ml of plasma by solid-phase extraction (SPE) onto a C8 reversed-phase sorbent and recovered with 0.5% acetic acid in methanol. The eluate was reconstituted with isopropanol which was found suitable for on-column injection. Prazepam was used as internal standard. The method was found appropriate for the quantification in a single run of alpidem, alprazolam, buspirone, chlordiazepoxide, clobazam, clotiazepam, diazepam, estazolam, flunitrazepam, lorazepam, midazolam, oxazepam, tofisopam, triazolam, and zolpidem within 30 min. Limits of quantification allow toxicological or pharmacological determinations, except for buspirone: only toxic blood levels can be quantified by this method. This first SPE of imidazopyridines (alpidem and zolpidem) provides faster, more efficient and cheaper sample preparation than the traditional liquid—liquid procedure. This GC analysis of alpidem and zolpidem is also the first described procedure for simultaneous quantification of all different classes of anxiolytics.  相似文献   

4.
A sensitive GC-MS method was developed for the quantitative analysis of ephedrine (EP), phenylpropanolamine (PPA) and methylephedrine (ME) in animal and human hair. After washing with 0.1% sodium dodecyl sulfate, hair samples (10 mg) were added with deuterated internal standards, extracted by 1-h sonication and over night soaking in 2 ml of 5 M HCl-methanol (1:20) at room temperature. Following evaporation of the liquid phase, the residue was dissolved in phosphate buffer solution (pH 6.0) and purified using a solid-phase extraction procedure with Bond Elut Certify columns. Two types of derivatization were compared - using trifluoroacetic anhydride (TFAA) and pentafluoropropionic anhydride (PFPA) - for discrimination of EP and methamphetamine (MA). Derivatized extracts were analyzed by GC-MS in the EI mode using a capillary column (OV-1 equivalent). From the results comparing three GC-MS conditions, PFP-derivatives separated with a temperature gradient of 20°C/min from 60°C to 280°C gave the best resolution between EP and MA. ME was analyzed as a trimethylsilyl derivative using N,O-bis-trimethylsilyl acetamide at the above GC condition. The assay was linear from 0.5 to 50 ng/mg (r=0.998) and capable of detecting less than 50 pg of derivatized EP, PPA and ME on-column. Intra-assay precision was characterized by C.V. values from 5 to 16% in the concentration range of 1–10 ng/mg hair. The method was used for the quantitative determination of EP, PPA and ME in the hair obtained from three rats with dark brown hair after ten intraperitoneal injections (5 mg/kg/day) of the three drugs and from three male and one female volunteers with black hair after an oral dose of 50 mg/day of EP-HCl for three days. Hair samples were collected by shaving from the back of rats and cutting from the scalp of humans 28 days after the first dose. The incorporation rates of EP, PPA and ME into hair (the ratios of [hair concentration] to [AUC]) obtained from the animal experiment were 0.10, 0.07 and 0.03, respectively, which are a little lower than those (0.14, 0.10 and 0.04) of their desoxy-compounds, MA, amphetamine and dimethylamphetamine. EP was detected at an average of 2.25 ng/mg (n=4) in human scalp hair and at a range of 1–29 ng/mg (n=3) in human beard hair until day 14, but its metabolite (PPA) was at a trace level in the hair of the four subjects. The method was successfully used for detection of ME and EP in the hair of a neonate and its mother who was abusing Bron syrup containing ME during the pregnancy.  相似文献   

5.
A sensitive analytical procedure for bupivacaine dosing in plasma samples by reversed-phase high-performance liquid chromatography is described. After a two-step extraction, the analysis was performed using a C18 column and a mobile phase of 0.01 M sodium dihydrogen-phosphate (pH 2.1)—acetonitrile (80:20, v/v). The extraction yield of bupivacaine from plasma was 73.5 ± 5.1% (mean ± S.D., n = 10). The within-day and between-day reproducibilities at a concentration of 100 ng/ml were 2.1% and 5.6%, respectively (n = 10). Calibration curves were linear (r2 = 0.9996) between 5 and 1000 ng/ml. The limit of detection, defined by a signal-to-noise ratio of 3:1, was 2 ng/ml. The accuracy at a concentration of 100 ng/ml was 2.3%. This method could be applied to the plasma analysis of seven other local anaesthetics (articaine, etidocaine, lidocaine, mepivacaine, pramocaine, procaine and tetracaine). The procedure was used in bioavailability studies of bupivacaine-loaded poly( -lactide) (i.e. PLA) and poly( -lactide-co-glycolide) (i.e. PLGA) microspheres after subcutaneous and intrathecal administrations in rabbits.  相似文献   

6.
The occurrence of thrombosis and phlebitis after intravenous injection of 10 mg diazepam, 4 mg lorazepam, or 1-2 mg flunitrazepam was studied on the second or third and the seventh to 10th days. A significantly higher incidence occurred with all drugs on days 7 to 10 than on days 2 and 3. Painless thrombosis occurred much more often with diazepam than with the other two benzodiazepines. Its incidence was greater in small hand or arm veins than in large antecubital vessels. Lorazepam and flunitrazepam therefore have clear advantages over diazepam.  相似文献   

7.
A sensitive, specific and reproducible method for the quantitative determination of stanozolol in human hair has been developed. The sample preparation involved a decontamination step of the hair with methylene chloride and the sonication in methanol of 100 mg of powdered hair for 2 h. After elimination of the solvent, the hair sample was solubilized in 1 ml 1 M NaOH, 15 min at 95°C, in the presence of 10 ng stanozolol-d3 used as internal standard. The homogenate was neutralized and extracted using consecutively a solid-phase (Isolute C18) and a liquid–liquid (pentane) extraction. After evaporation of the final organic phase, the dry extract was derivatized using 40 μl MBHFA–TMSI (1000:20, v/v), incubated for 5 min at 80°C, followed by 10 μl of MBHFBA, incubated for 30 min at 80°C. The derivatized extract was analyzed by a Hewlett-Packard GC–MS system with a 5989 B Engine operating in the negative chemical ionization mode of detection. Linearity of the detector response was observed for stanozolol concentrations ranging from 5 to 200 pg/mg with a correlation coefficient of 0.998. The assay was capable of detecting 2 pg of stanozolol per mg of hair when approximately 100 mg hair material was processed, with a quantification limit set at 5 pg/mg. Intra-day precision was 5.9% at 50 pg/mg and 7.8% at 25 pg/mg with extraction recoveries of 79.8 and 75.1%, respectively. The analysis of a 3-cm long hair strand, obtained from a young bodybuilder (27 year old) assuming to be a regular user of Winstrol (stanozolol, 2 mg), revealed the presence of stanozolol at the concentration of 15 pg/mg.  相似文献   

8.
A solid-phase extraction (SPE) procedure was developed for the quantification of nalbuphine in a small volume (500 μl) of human plasma with subsequent assay by high-performance liquid chromatography (HPLC) and electrochemical detection using 6-monoacetylmorphine as internal standard. Plasma was extracted using Bond Elute certified extraction columns (LCR: 10 ml, 130 mg) after conditioning with methanol and 0.2 M Tris buffer (pH 8). Elution was performed with a CH2Cl2-isopropanol-NH4OH (79:20:, v/v). The organic phase was evaporated to dryness and resuspended in HPLC mobile phase containing 2% isopropanol. Linearity was assessed over the 5–100 ng/ml concentration range and a straight line passing through the origin was obtained. Experiments with spiked plasma samples resulted in recoveries of 95±5.4% and 98±6.2% for nalbuphine and 6-monoacetylmorphine, respectively. The optimal pH conditions for the SPE were found at pH 8. The intra-day coefficients of variation (C.V.) for 5, 40, and 100 ng/ml were 5.3, 3.0 and 2.3% (n=8) and the inter-day C.V.s were 7.7, 3.2 and 3.5% (n=10), respectively. The detection limit for 500 μl plasma sample was 0.02 ng/ml and the limit of quantification 0.1 ng/ml (C.V.=12.4%). The ease of the proposed method of analysis, as well as its high accuracy and sensitivity allow its application to pharmacokinetic studies. A preliminary kinetic profile of nalbuphine after rectal administration in a pediatric patient is presented.  相似文献   

9.
A specific and reproducible HPLC method using a Chiral-AGP column and UV detection was developed for the evaluation of the pharmacokinetic profile of oxodipine enantiomers in dog and man. Each enantiomer was determined in plasma in the concentration range 1–400 ng/ml using the internal standard calibration method with linear regression analysis. After extraction of oxodipine and the internal standard at alkaline pH with diethyl ether—n-hexane (50:50, v/v), this method permitted the determination of each enantiomer at levels down to 10 ng/ml in dog plasma and 25 ng/ml in human plasma with sufficient accuracy (relative error <11%, n = 6) and precision (coefficient of variation <16%, n = 6). The extracted plasma volume was 500 μl and after evaporation of the organic phase, the dry residue was dissolved in 100 μl of water—2-propanol; an aliquot of 80 μl was injected into the HPLC system.  相似文献   

10.
Chemicals that are active at the benzodiazepine receptor (endozepines) are naturally present in the CNS. These substances are present in tissue from humans and animals and in plants and fungi. Using selective extraction protocols, HPLC purification, receptor binding displacement studies, and selective anti-benzodiazepine antibodies, we have identified six or seven peaks of endozepines in rat and human brain. All material could competitively displace [3H]flunitrazepam binding to cerebellar benzodiazepine binding sites. Two peaks also competitively displaced Ro 5-4864 binding to the mitochondrial benzodiazepine binding site. Total amounts of brain endozepines were estimated to be present in potentially physiological concentrations, based on their ability to displace [3H]flunitrazepam binding. Although endozepine peaks 1 and 2 had HPLC retention profiles similar to those of nordiazepam and diazepam, respectively, gas chromatography-mass spectrometry as well as high-performance TLC revealed biologically insignificant amounts of diazepam (less than 0.02 pg/g) and nordiazepam (less than 0.02 pg/g) in the purified material. Electrophysiologically, some purified endozepines positively modulated gamma-aminobutyric acid (GABA) action on Cl- conductance, monitored in patch-clamped cultured cortical neurons or in mammalian cells transfected with cDNA encoding various GABAA receptor subunits. These studies demonstrate that mammalian brains contain endozepines that could serve as potent endogenous positive allosteric modulators of GABAA receptors.  相似文献   

11.
A procedure is presented for the identification of nordiazepam and its metabolite, oxazepam, in human hair. The method involves decontamination of hair with dichloromethane, incubation in phosphate buffer (pH 7.6) in the presence of deuterated internal standards, liquid-liquid extraction, derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide plus 1% trimethylchlorosilane and gas chromatography-mass spectrometry using negative-ion chemical ionization with methane. Among thirty samples obtained from polydrug abusers, thirteen tested positive for nordiazepam, in the range 0.25–18.87 ng/mg. Five samples were also positive for oxazepam, in the range 0.11–0.50 ng/mg.  相似文献   

12.
Benzodiazepines and zolpidem are controlled in many countries due to their inherent adverse effects of a high degree of tolerance and dependence. Recently, as some of these drugs have become distributed illegally and available through media such as the Internet, their abuse is becoming a serious social problem. Hair is a useful specimen to prove chronic drug use. In the present study, a simultaneous analytical method for the detection of 27 benzodiazepines and metabolites and zolpidem in hair was established and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The drugs and their metabolites in hair were extracted using methanol, filtered and injected on the LC-MS/MS. The following validation parameters of the method were satisfactory: selectivity, linearity, matrix effect, recovery, process efficiency, intra- and inter-assay precision and accuracy and processed sample stability. The limit of detection (LOD) and the limit of quantification (LOQ) were the total drug detected from the sample. The LODs ranged from 0.005 ng (zolpidem) to 0.5 ng (bromazepam and chlordiazepoxide) and the LOQs were 0.25 ng in every analyte except for bromazepam and chlordiazepoxide, for which they were 0.5 ng. The developed method was successfully applied to five legal cases involving use of benzodiazepines and zolpidem and to an animal study on drug incorporation into hair. Diazepam and its three metabolites, as well as lorazepam, were detected in hair from both the multiple- and single-dose administration groups of lean Zucker rats. The concentration of diazepam was higher than those of its metabolites in both dark grey and white hair from the multiple-dose administration groups, with the mean concentration ranges from 0.16 to 0.51 ng/mg and from 0.10 to 0.24 ng/mg, respectively. The mean concentration ranges of lorazepam were from 0.05 to 0.37 ng/mg in dark grey hair and from 0.11 to 0.45 ng/mg in white hair from the multiple-dose administration groups. Hair pigmentation did not have any significant effect on the degree of the deposition of drugs and their metabolites in hair.  相似文献   

13.
Capillary electrophoresis (CE) is an attractive approach for the analysis of drugs in body fluids. We made a simultaneous analysis of nitrazepam, diazepam, estazolam, bromazepam, triazolam and flurazepam using CE with on-column detection at 200 nm. We obtained the best electropherograms under a condition of 5 mM phosphate-borate (pH 8.5) containing 50 mM SDS and 15% methanol. We examined the effect of the sample solvent matrix on the electropherograms obtained, indicating that increasing the methanol content in the sample solvent or the injection volume above a certain threshold limit decreased the resolution. We then focused on application of the CE to the analysis of the drugs in spiked serum, being appropriate for an analysis within 25 min. Linearity, the detection limit, accuracy and reproducibility were established using this method. The calibration curve was linear up to 1 mg/l of serum concentration. The lower limit of detection was 5 pg per injection and 0.025 mg/l of the serum concentration for all the compounds except for flurazepam, for which they were 40 pg/injection and 0.2 mg/l. The detection limits obtained allowed toxicological and pharmacological determinations for nitrazepam, diazepam, estazolam and bromazepam, but not for triazolam and flurazepam. Only toxic blood levels for the latter two benzodiazepines could be quantified by this method. We concluded that the CE could at least be applicable to simultaneous screening for toxic levels of benzodiazepines. We suggest that this technique may offer criminal toxicologists a rapid, simple and adaptable approach for the estimation of many other drugs in body fluids.  相似文献   

14.
PAF causes dose dependent platelet aggregation of human platelet rich plasma or gel filtered platelets (GFP). The benzodiazepines alprazolam and triazolam, but not diazepam (1-10 microM), inhibit PAF induced aggregation but have no effect on aggregation induced by other platelet agonists such as ADP, epinephrine and collagen. The IC50 for aggregation by PAF (4 nM) in GFP is 1 microM for both alprazolam and triazolam. The mechanism for this inhibition was explored by studying the binding of 3H-PAF(0.08 nM) to GFP in Tyrodes buffer containing albumin (0.35%), Mg++ (1mM) and Ca++ (0.5mM). GFP was incubated with different doses of the drug for 5 min prior to addition of 3H-PAF. Incubation was then carried out for 60 min at 25 degrees C to achieve binding equilibrium, as previously established. Alprazolam and triazolam, but not diazepam, caused competitive displacement of 3H-PAF from specific binding sites of GFP. The IC50 of alprazolam was 3.8 microM while that of triazolam was 0.82 microM. Lineweaver-Burk plots of 3H-PAF binding in the presence of inhibitor were also consistent with competitive inhibition. These results are consistent with the interpretation that the specific inhibition of PAF induced platelet aggregation by alprazolam and triazolam, respectively, is due to competitive inhibition of binding of PAF to its receptor.  相似文献   

15.
A simple micellar liquid chromatographic (MLC) procedure is reported for the determination of several benzodiazepines in serum: bromazepam, diazepam, flunitrazepam, halazepam, medazepam, nitrazepam, oxazepam and tetrazepam. The optimization studies have been made in C(18) and C(8) columns, using solutions containing sodium dodecyl sulphate (SDS) modified with butanol or pentanol as mobile phases. The method proposed for the determination of the benzodiazepines uses a hybrid micellar mobile phase of 0.06 M SDS-5% butanol-0.01 M phosphate buffer (pH 7) at 25 degrees C, and UV detection (230 nm) in a C(18) column. The serum samples were injected directly, without any pretreatment, and eluted in less than 22 min, in accordance with their relative polarities, as indicated by their octanol-water partition coefficients. The limits of detection (ng ml(-1)) were within the ranges of 2-6 and 4-18 for aqueous and serum samples, respectively. Repeatability and intermediate precision were tested for three different concentrations of the drugs, and RSD (%) was below 10 for most of the assays. The MLC results were compared with those obtained from a conventional HPLC method using methanol-water 5:5 (v/v) which requires a previous extraction procedure.  相似文献   

16.
A column-switching high-performance liquid chromatographic method for the simultaneous determination of five frequently prescribed benzodiazepines: clonazepam, diazepam, flunitrazepam, midazolam and oxazepam was developed. A 50-μl plasma sample was directly injected into a BioTrap 500 MS (hydrophobic polymer) column. After a washing step with a mixture of phosphate buffer and acetonitrile, the retained benzodiazepines were back-flushed into a reversed-phase (LiChrospher Select B C8) column with a mobile phase of acetonitrile–phosphate buffer. The method showed excellent linearity from 50 to 1000 ng/ml for clonazepam, flunitrazepam and midazolam and from 50 to 5000 ng/ml for diazepam and oxazepam. The recoveries were around 98% for all the benzodiazepines studied. The relative standard deviation for between- and within-day assay was <20% for low concentrations close to the values of the limit of quantification and <4% for high concentrations. The procedure described is relatively simple and rapid because no off-line manipulation of the sample is required: the total analysis time is approximately 30 min.  相似文献   

17.
A rapid method was developed for the determination of diazepam and nordiazepam (N-desmethyldiazepam) in human plasma using electron capture gas—liquid chromatography (GLC—ECD). The concentration of diazepam and nordiazepam is determined using 0.5 ml of plasma extracted with 1.0 ml of benzene containing 25 ng/ml of methylnitrazepam as the internal standard. The benzene extract is removed and an aliquot is subjected to automated GLC—ECD analysis. The method has a sensitivity limit of 5 ng diazepam and 10 ng nordiazepam per milliliter of plasma. The method was used to determine the plasma levels in man following the first 5-mg diazepam dose, as well as during chronic oral administration of 5 mg diazepam three times daily and 15 mg diazepam once a day.  相似文献   

18.
A method is described for the simultaneous identification and quantification of opiates, amphetamines, cocainics, diazepam and nordiazepam from one hair extract (typically 10-50mg hair). After decontamination by washing with shampoo, dichloromethane, isopropanol and acetone, drugs were extracted using 0.1M HCl followed by SPE clean-up using mixed-mode extraction cartridges. The SPE extracts were submitted to a two-step derivatisation using MBTFA and MSTFA+1% TCMS and analysis was performed by GC-MS using both SIM and scan modes. Four deuterated standards were used to monitor 14 compounds. The limit of quantification was the total drug detected from the sample. This was 5 ng for amphetamines and 10 ng for remaining drugs which is equivalent to 0.1 and 0.2 ng/mg from a 50mg sample. Standard curves for the range 5-400 ng total drug concentration for all drugs had regression coefficients greater than 0.98. An authentic hair sample was used to validate the method and gave R.S.D.s <25% for both inter and intra-day reproducibility. The results of the analysis of hair taken from four patients attending a drug treatment clinic and six hair samples including head hair, pubic hair, axial hair and beard taken at post-mortem are presented.  相似文献   

19.
A rapid, selective, sensitive and reproducible HPLC with recutive electrochemical detection for quantitatvie determination of artemether (ART) and its plasma metabolite, dihydroartemisinin (DHA: and β isomers) in plasma is described. The procedure involved the extraction of ART, DHA and the internal standard, artemisinin (ARN) with dichloromethane-tert.-methylbutyl ether (1:1, v/v) or n-butyl chloride-ethyl acetate (9:1, v/v). Chromatographic separation was performed with a mobile phase of acetonitrile-water (20:80, v/v) containing 0.1 M acetic acid pH 5.0, running through a μBondapak CN column. The method was capable of separating the two isomeric forms of DHA (, β). The retention times of -DHA, β-DHA, ARN and ART were 4.6, 5.9, 7.9 and 9.6 min, respectively. Validation of the assay method was performed using both extraction systems. The two extraction systems produced comparable recoveries of the various analytes. The average recoveries of ART, DHA and ARN over the concentration range 80–640 ng/ml were 86–93%. The coefficients of variation were below 10% for all three drugs (ART, -DHA, ARN). The minimum detectable concentrations for ART and -DHA in spiked plasma samples were 5 and 3 ng/ml, respectively. The method was found to be suitable for use in clinical pharmacokinetic study.  相似文献   

20.
A method is described for the determination of pyronaridine in plasma using high-performance liquid chromatography with fluorescence detection. The method involves liquid-liquid extraction with phosphate buffer (pH 6.0, 0.05 M) and diethyl ether-hexane (70:30%, v/v) and chromatographic separation on a C18 column (Nucleosil, 250 × 4.6 mm I.D., 5 μm particle size) with acetonitrile-0.05 M phosphate buffer pH 6.0 (60:40%, v/v) as the mobile phase (1 ml/min) and detection by fluorescence (λex = 267 nm, λem = 443 nm). The detector response is linear up to 1000 ng and the overall recoveries pyronaridine and quinine were 90.0 and 60.3%, respectively. The assay procedure was adequately sensitive to measure 10 ng/ml pyronaridine in plasma samples with acceptable precision (< 15% C.V.). The method was found to be suitable for use in clinical pharmacological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号