首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central role of multisubunit tethering complexes in intracellular trafficking has been established in yeast and mammalian systems. However, little is known about their roles in the stress responses and the early secretory pathway in Arabidopsis. In this study, Maigo2 (MAG2), which is equivalent to the yeast Tip20p and mammalian Rad50‐interacting protein, is found to be required for the responses to salt stress, osmotic stress and abscisic acid in seed germination and vegetative growth, and MAG2‐like (MAG2L) is partially redundant with MAG2 in response to environmental stresses. MAG2 strongly interacts with the central region of ZW10, and both proteins are important as plant endoplasmic reticulum (ER)‐stress regulators. ER morphology and vacuolar protein trafficking are unaffected in the mag2, mag2l and zw10 mutants, and the secretory marker to the apoplast is correctly transported in mag2 plants, which indicate that MAG2 functions as a complex with ZW10, and is potentially involved in Golgi‐to‐ER retrograde trafficking. Therefore, a new role for ER–Golgi membrane trafficking in abiotic‐stress and ER‐stress responses is discovered.  相似文献   

2.
Kim H  Park M  Kim SJ  Hwang I 《The Plant cell》2005,17(3):888-902
Actin filaments are thought to play an important role in intracellular trafficking in various eukaryotic cells. However, their involvement in intracellular trafficking in plant cells has not been clearly demonstrated. Here, we investigated the roles actin filaments play in intracellular trafficking in plant cells using latrunculin B (Lat B), an inhibitor of actin filament assembly, or actin mutants that disrupt actin filaments when overexpressed. Lat B and actin2 mutant overexpression inhibited the trafficking of two vacuolar reporter proteins, sporamin:green fluorescent protein (GFP) and Arabidopsis thaliana aleurain-like protein:GFP, to the central vacuole; instead, a punctate staining pattern was observed. Colocalization experiments with various marker proteins indicated that these punctate stains corresponded to the Golgi complex. The A. thaliana vacuolar sorting receptor VSR-At, which mainly localizes to the prevacuolar compartment, also accumulated at the Golgi complex in the presence of Lat B. However, Lat B had no effect on the endoplasmic reticulum (ER) to Golgi trafficking of sialyltransferase or retrograde Golgi to ER trafficking. Lat B also failed to influence the Golgi to plasma membrane trafficking of H+-ATPase:GFP or the secretion of invertase:GFP. Based on these observations, we propose that actin filaments play a critical role in the trafficking of proteins from the Golgi complex to the central vacuole.  相似文献   

3.
The PRA1 gene family in Arabidopsis   总被引:1,自引:0,他引:1  
Prenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins. The Arabidopsis (Arabidopsis thaliana) PRA1 (AtPRA1) proteins were found to homodimerize and heterodimerize in a manner corresponding to their phylogenetic distribution. Different AtPRA1 family members displayed distinct expression patterns, with a preference for vascular cells and expanding or developing tissues. AtPRA1 genes were significantly coexpressed with Rab GTPases and genes encoding vesicle transport proteins, suggesting an involvement in the vesicle trafficking process similar to that of their animal counterparts. Correspondingly, AtPRA1 proteins were localized in the endoplasmic reticulum, Golgi apparatus, and endosomes/prevacuolar compartments, hinting at a function in both secretory and endocytic intracellular trafficking pathways. Taken together, our data reveal a high functional diversity of AtPRA1 proteins, probably dealing with the various demands of the complex trafficking system.  相似文献   

4.
Distinct sets of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are distributed to specific intracellular compartments and catalyze membrane fusion events. Although the central role of these proteins in membrane fusion is established in nonplant systems, little is known about their role in the early secretory pathway of plant cells. Analysis of the Arabidopsis (Arabidopsis thaliana) genome reveals 54 genes encoding SNARE proteins, some of which are expected to be key regulators of membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. To gain insights on the role of SNAREs of the early secretory pathway in plant cells, we have cloned the Arabidopsis v-SNAREs Sec22, Memb11, Bet11, and the t-SNARE Sed5, and analyzed their distribution in plant cells in vivo. By means of live cell imaging, we have determined that these SNAREs localize at the Golgi apparatus. In addition, Sec22 was also distributed at the ER. We have then focused on understanding the function of Sec22 and Memb11 in comparison to the other SNAREs. Overexpression of the v-SNAREs Sec22 and Memb11 but not of the other SNAREs induced collapse of Golgi membrane proteins into the ER, and the secretion of a soluble secretory marker was abrogated by all SNAREs. Our studies suggest that Sec22 and Memb11 are involved in anterograde protein trafficking at the ER-Golgi interface.  相似文献   

5.
6.
7.
Btn2p is a novel coiled coil cytosolic protein in Saccharomyces cerevisiae. We report that Btn2p interacts with Yif1p, a component of a protein complex at the Golgi that functions in ER to Golgi transport. Deletion of Btn2p, btn2-delta, results in mis-localiztion of Yif1p to the vacuole. Therefore, Btn2p may have an apparent role in intracellular trafficking of proteins. Btn2p was originally identified as being up-regulated in a btn1-delta strain, which exhibits dysregulation of vacuolar pH, and this up-regulation of Btn2p was presumed to contribute to maintaining a stable vacuolar pH [Pearce et al. Nat. Genet. 22 (1999) 55]. We propose that up-regulation of Btn2p in btn1-delta is an indicator of altered trafficking within the cell, and as btn1-delta serves as a model for the lysosomal storage disorder Batten disease, that altered intracellular trafficking may contribute to some of the cellular pathological hallmarks of this disease.  相似文献   

8.
We have screened a complete collection of yeast knockout mutants for sensitivity to monensin, an ionophore that interferes with intracellular transport. A total of 63 sensitive strains were found. Most of the strains were deleted for genes involved in post-Golgi traffic, with an emphasis on vacuolar biogenesis. A high correlation was thus seen with VPS and VAM genes, but there were also significant differences between the three sets of genes. A weaker correlation was seen with sensitivity to NaCl, in particular rate of growth effects. Interestingly, all 14 genes encoding subunits of the vacuolar H(+)-ATPase (V-ATPase) were absent in our screen, even though they appeared in the VPS or VAM screens. All monensin-sensitive mutants that could be tested interact synthetically with a deletion of the A subunit of the V-ATPase, Vma1. Synthetic lethality was limited to mutations affecting endocytosis or retrograde transport to Golgi. In addition, vma1 was epistatic over the monensin sensitivity of vacuolar transport mutants, but not endocytosis mutants. Deletions of the two isoforms of the V-ATPase a subunit, Vph1 and Stv1 had opposite effects on the monensin sensitivity of a ypt7 mutant. These findings are consistent with a model where monensin inhibits growth by interfering with the maintenance of an acidic pH in the late secretory pathway. The synthetic lethality of vma1 with mutations affecting retrograde transport to the Golgi further suggests that it is in the late Golgi that a low pH must be maintained.  相似文献   

9.
Biomolecules in the secretory pathway use membrane trafficking for reaching their final intracellular destination or for secretion outside the cell. This highly dynamic and multipartite process involves different organelles that communicate to one another while maintaining their identity, shape, and function. Recent studies unraveled new mechanisms of interorganelle communication that help organize the early secretory pathway. We highlight how the spatial proximity between endoplasmic reticulum (ER) exit sites and early Golgi elements provides novel means of ER–Golgi communication for ER export. We also review recent findings on how membrane contact sites between the ER and the trans-Golgi membranes can sustain anterograde traffic out of the Golgi complex.  相似文献   

10.
Secretory proteins in eukaryotic cells are transported to the cell surface via the endoplasmic reticulum (ER) and the Golgi apparatus by membrane-bounded vesicles. We screened a collection of temperature-sensitive mutants of Saccharomyces cerevisiae for defects in ER-to-Golgi transport. Two of the genes identified in this screen were PRP2, which encodes a known pre-mRNA splicing factor, and RSE1, a novel gene that we show to be important for pre-mRNA splicing. Both prp2-13 and rse1-1 mutants accumulate the ER forms of invertase and the vacuolar protease CPY at restrictive temperature. The secretion defect in each mutant can be suppressed by increasing the amount of SAR1, which encodes a small GTPase essential for COPII vesicle formation from the ER, or by deleting the intron from the SAR1 gene. These data indicate that a failure to splice SAR1 pre-mRNA is the specific cause of the secretion defects in prp2-13 and rse1-1. Moreover, these data imply that Sar1p is a limiting component of the ER-to-Golgi transport machinery and suggest a way that secretory pathway function might be coordinated with the amount of gene expression in a cell.  相似文献   

11.
Plant‐based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C‐terminal fused to the heavy chain of 14D9 (vac‐Abs) and compared with secreted and ER‐retained variants (sec‐Ab, ER‐Ab, respectively). Accumulation of ER‐ and vac‐Abs was 10‐ to 15‐fold higher than sec‐Ab. N‐glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec‐Ab while vac‐Abs carried mainly oligomannosidic (Man 7‐9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec‐Ab‐RFP localized in the apoplast while vac‐Abs‐RFP were exclusively detected in the central vacuole. The data suggest that vac‐Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N‐glycans). Importantly, vac‐Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post‐translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.  相似文献   

12.
The soluble form of vascular endothelial growth factor receptor 1 (sVEGFR-1/sFlt1) is generated by alternative splicing of the FLT1 gene. Secretion of sFlt1 from endothelial cells plays an important role in blood vessel sprouting and morphogenesis. However, excess sFlt1 secretion is associated with diseases such as preeclampsia and chronic kidney disease. To date, the secretory transport process involved in the secretion of sFlt1 is poorly understood. In the present study, we investigated the itinerary of sFlt1 trafficking along the secretory pathway. To understand the timecourse of sFlt1 secretion, endothelial cells stably expressing sFlt1 were metabolically radiolabeled with [(35)S]-methionine and cysteine. Our results indicate that after initial synthesis the levels of secreted [(35)S]-sFlt1 in the extracellular medium peaks at 8 hours. Treatment with brefeldin A (BFA), a drug which blocks trafficking between the endoplasmic reticulum (ER) and the Golgi complex, inhibited extracellular release of sFlt1 suggesting that ER to Golgi and intra-Golgi trafficking of sFlt1 are essential for its secretion. Furthermore, we show that ectopic expression of dominant-negative mutant forms of Arf1, Arf6, and Rab11 as well as siRNA-mediated knockdown of these GTPases block secretion of sFlt1 during normoxic and hypoxic conditions suggesting role for these small GTPases. This work is the first to report role of regulatory proteins involved in sFlt1 trafficking along the secretory pathway and may provide insights and new molecular targets for the modulation of sFlt-1 release during physiological and pathological conditions.  相似文献   

13.
Classically, endoplasmic reticulum (ER) retention signals in secreted integral membrane proteins impose the requirement to assemble with other cognate subunits to form functional assemblies before they can exit the ER. We report that GluK5 has two ER retention signals in its cytoplasmic C-terminus: an arginine-based signal and a di-leucine motif previously thought to be an endocytic motif. GluK5 assembles with GluK2, but surprisingly GluK2 association does little to block the ER retention signals. We find instead that the ER retention signals are blocked by two proteins involved in intracellular trafficking, SAP97 and CASK. We show that SAP97, in the presence of CASK and the receptor complex, assumes an extended conformation. In the extended conformation, SAP97 makes its SH3 and GuK domains available to bind and sterically mask the ER retention signals in the GluK5 C-terminus. SAP97 and CASK are also necessary for sorting receptor cargoes into the local dendritic secretory pathway in neurons. We show that the ER retention signals of GluK5 play a vital role in sorting the receptor complex in the local dendritic secretory pathway in neurons. These data suggest a new role for ER retention signals in trafficking integral membrane proteins in neurons.SignificanceWe present evidence that the ER retention signals in the kainate receptors containing GluK5 impose a requirement for sorting into local dendritic secretory pathways in neurons, as opposed to traversing the somatic Golgi apparatus. There are two ER retention signals in the C-terminus of GluK5. We show that both are blocked by physical association with SAP97 and CASK. The SH3 and GuK domains of SAP97, in the presence of CASK, bind directly to each ER retention signal and form a complex. These results support an entirely new function for ER retention signals in the C-termini of neuronal receptors, such as NMDA and kainate receptors, and define a mechanism for selective entry of receptors into local secretory pathways.  相似文献   

14.
Toxoplasma gondii and its apicomplexan relatives (such as Plasmodium falciparum, which causes malaria) are obligate intracellular parasites that rely on sequential protein release from specialized secretory organelles for invasion and multiplication within host cells. Because of the importance of these unusual membrane trafficking pathways for drug development and comparative cell biology, characterizing them is essential. In particular, it is unclear what role retrieval mechanisms play in parasite membrane trafficking or where they operate. Previously, we showed that T. gondii's beta-COP (TgBetaCOP; a subunit of coatomer protein complex I, COPI) and retrieval reporters localize exclusively to the zone between the parasite endoplasmic reticulum (ER) and Golgi apparatus. This suggested the existence of an HDEL receptor in T. gondii. We have now identified, cloned, and sequenced this receptor, TgERD2. TgERD2 localizes in a Golgi or ER pattern suggestive of the HDEL retrieval reporter (K. M. Hager, B. Striepen, L. G. Tilney, and D. S. Roos, J. Cell Sci. 112:2631-2638, 1999). A functional assay reveals that TgERD2 is able to complement the Saccharomyces cerevisiae ERD2 null mutant. Retrieval studies reveal that stable expression of a fluorescent exogenous retrieval ligand results in a dispersal of betaCOP signal throughout the cytoplasm and, surprisingly, results in betaCOP staining of the vacuolar space of the parasite. In contrast, stable expression of TgERD2GFP does not appear to disturb betaCOP staining. In addition to TgERD2, Toxoplasma contains two more divergent ERD2 relatives. Phylogenetic analysis reveals that these proteins belong to a previously unrecognized ERD2 subfamily common to plants and alveolate organisms and as such could represent mediators of parasite-specific retrieval functions. No evidence of class 2 ERD2 proteins was found in metazoan organisms or fungi.  相似文献   

15.
Toxin trafficking studies provide valuable information about endogenous pathways of intracellular transport. Subtilase cytotoxin (SubAB) is transported in a retrograde manner through the endosome to the Golgi and then to the endoplasmic reticulum (ER), where it specifically cleaves the ER chaperone BiP/GRP78 (Binding immunoglobin protein/Glucose-Regulated Protein of 78 kDa). To identify the SubAB Golgi trafficking route, we have used siRNA-mediated silencing and immunofluorescence microscopy in HeLa and Vero cells. Knockdown (KD) of subunits of the conserved oligomeric Golgi (COG) complex significantly delays SubAB cytotoxicity and blocks SubAB trafficking to the cis Golgi. Depletion of Rab6 and β-COP proteins causes a similar delay in SubAB-mediated GRP78 cleavage and did not augment the trafficking block observed in COG KD cells, indicating that all three Golgi factors operate on the same 'fast' retrograde trafficking pathway. SubAB trafficking is completely blocked in cells deficient in the Golgi SNARE Syntaxin 5 and does not require the activity of endosomal sorting nexins SNX1 and SNX2. Surprisingly, depletion of Golgi tethers p115 and golgin-84 that regulates two previously described coat protein I (COPI) vesicle-mediated pathways did not interfere with SubAB trafficking, indicating that SubAB is exploiting a novel COG/Rab6/COPI-dependent retrograde trafficking pathway.  相似文献   

16.
Ras proteins are synthesized as cytosolic precursors, but then undergo posttranslational lipid addition, membrane association, and subcellular targeting to the plasma membrane. Although the enzymes responsible for farnesyl and palmitoyl lipid addition have been described, the mechanism by which these modifications contribute to the subcellular localization of Ras is not known. Following addition of the farnesyl group, Ras associates with the endoplasmic reticulum (ER), where palmitoylation occurs in Saccharomyces cerevisiae. The subsequent translocation of Ras from the ER to the plasma membrane does not require the classical secretory pathway or a functional Golgi apparatus. Vesicular and nonvesicular transport pathways for Ras proteins have been proposed, but the pathway is not known. Here we describe a genetic screen designed to identify mutants defective in Ras trafficking in S. cerevisiae. The screen implicates, for the first time, the class C VPS complex in Ras trafficking. Vps proteins are best characterized for their role in endosome and vacuole membrane fusion. However, the role of the class C Vps complex in Ras trafficking is distinct from its role in endosome and vacuole vesicle fusion, as a mitochondrial involvement was uncovered. Disruption of class C VPS genes results in mitochondrial defects and an accumulation of Ras proteins on mitochondrial membranes. Ras also fractionates with mitochondria in wild-type cells, where it is detected on the outer mitochondrial membrane by virtue of its sensitivity to protease treatment. These results point to a previously uncharacterized role of mitochondria in the subcellular trafficking of Ras proteins.  相似文献   

17.
A central question in cell biology is how the identity of organelles is established and maintained. Here, we report on GOLD36, an EMS mutant identified through a screen for partial displacement of the Golgi marker, ST‐GFP, to other organelles. GOLD36 showed partial distribution of ST‐GFP into a modified endoplasmic reticulum (ER) network, which formed bulges and large skein‐like structures entangling Golgi stacks. GOLD36 showed defects in ER protein export as evidenced by our observations that, besides the partial retention of Golgi markers in the ER, the trafficking of a soluble bulk‐flow marker to the cell surface was also compromised. Using a combination of classical mapping and next‐generation DNA sequencing approaches, we linked the mutant phenotype to a missense mutation of a proline residue in position 80 to a leucine residue in a small endomembrane protein encoded by the gold36 locus ( At1g54030 ). Subcellular localization analyses indicated that GOLD36 is a vacuolar protein and that its mutated form is retained in the ER. Interestingly also, a gold36 knock‐out mutant mirrored the GOLD36 subcellular phenotype. These data indicate that GOLD36 is a protein destined to post‐ER compartments and suggest that its export from the ER is a requirement to ensure steady‐state maintenance of the organelle’s organization and functional activity in relation to other secretory compartments. We speculate that GOLD36 may be a factor that is necessary for ER integrity because of its ability to limit deleterious effects of other secretory proteins on the ER.  相似文献   

18.
Autophagosomes and Cvt vesicles are limited by two membrane layers. The biogenesis of these unconventional vesicles and the origin of their membranes are hardly understood. Here we identify in Saccharomyces cerevisiae Trs85, a nonessential component of the TRAPP complexes, to be required for the biogenesis of Cvt vesicles. The TRAPP complexes function in endoplasmic reticulum-to-Golgi and Golgi trafficking. Growing trs85delta cells show a defect in the organization of the preautophagosomal structure. Although proaminopeptidase I is normally recruited to the preautophagosomal structure, the recruitment of green fluorescent protein-Atg8 depends on Trs85. Autophagy proceeds in the absence of Trs85, albeit at a reduced rate. Our electron microscopic analysis demonstrated that the reduced autophagic rate of trs85delta cells does not result from a reduced size of the autophagosomes. Growing and starved cells lacking Trs85 did not show defects in vacuolar biogenesis; mature vacuolar proteinase B and carboxypeptidase Y were present. Also vacuolar acidification was normal in these cells. It is known that mutations impairing the integrity of the ER or Golgi block both autophagy and the Cvt pathway. But the phenotypes of trs85delta cells show striking differences to those seen in mutants with defects in the early secretory pathway. This suggests that Trs85 might play a direct role in the Cvt pathway and autophagy.  相似文献   

19.
Despite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is the major function of OBs and is markedly up-regulated upon ascorbic acid (AA) stimulation, significantly more so than in fibroblast cells. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone protein secretion and deposition. Protein trafficking along the exocytic and endocytic pathways is aided by many molecules, with Rab GTPases being master regulators of vesicle targeting. In this study, we used microarray analysis to identify the Rab GTPases that are up-regulated during a 5-day AA differentiation of OBs, namely Rab1, Rab3d, and Rab27b. Further, we investigated the role of identified Rabs in regulating the trafficking of collagen from the site of synthesis in the ER to the Golgi and ultimately to the plasma membrane utilizing Rab dominant negative (DN) expression. We also observed that experimental halting of biosynthetic trafficking by these mutant Rabs initiated proteasome-mediated degradation of procollagen and ceased global protein translation. Acute expression of Rab1 and Rab3d DN constructs partially alleviated this negative feedback mechanism and resulted in impaired ER to Golgi trafficking of procollagen. Similar expression of Rab27b DN constructs resulted in dispersed collagen vesicles which may represent failed secretory vesicles sequestered in the cytosol. A significant and strong reduction in extracellular collagen levels was also observed implicating the functional importance of Rab1, Rab3d and Rab27b in these major collagen-producing cells.  相似文献   

20.
How organelle identity is established and maintained, and how organelles divide and partition between daughter cells, are central questions of organelle biology. For the membrane-bound organelles of the secretory and endocytic pathways [including the endoplasmic reticulum (ER), Golgi complex, lysosomes, and endosomes], answering these questions has proved difficult because these organelles undergo continuous exchange of material. As a result, many "resident" proteins are not localized to a single site, organelle boundaries overlap, and when interorganellar membrane flow is interrupted, organelle structure is altered. The existence and identity of these organelles, therefore, appears to be a product of the dynamic processes of membrane trafficking and sorting. This is particularly true for the Golgi complex, which resides and functions at the crossroads of the secretory pathway. The Golgi receives newly synthesized proteins from the ER, covalently modifies them, and then distributes them to various final destinations within the cell. In addition, the Golgi recycles selected components back to the ER. These activities result from the Golgi's distinctive membranes, which are organized as polarized stacks (cis to trans) of flattened cisternae surrounded by tubules and vesicles. Golgi membranes are highly dynamic despite their characteristic organization and morphology, undergoing rapid disassembly and reassembly during mitosis and in response to perturbations in membrane trafficking pathways. How Golgi membranes fragment and disperse under these conditions is only beginning to be clarified, but is central to understanding the mechanism(s) underlying Golgi identity and biogenesis. Recent work, discussed in this review, suggests that membrane recycling pathways operating between the Golgi and ER play an indispensable role in Golgi maintenance and biogenesis, with the Golgi dispersing and reforming through the intermediary of the ER both in mitosis and in interphase when membrane cycling pathways are disrupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号