首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
S-methylated cysteines in human lens gamma S-crystallins   总被引:1,自引:0,他引:1  
Lapko VN  Smith DL  Smith JB 《Biochemistry》2002,41(50):14645-14651
The proteins of the eye lens, which do not turn over throughout life, undergo many modifications, some of which lead to senile cataract. We describe a modification, S-methylation of cysteine, that may serve to protect the lens from detrimental modifications. The modification was detected as a +14 Da peak in electrospray ionization mass spectra of human lens gammaS-crystallins. Derivatization of gammaS-crystallin with iodoacetamide showed reaction at only six of the seven cysteines, indicating the modification blocked reaction at one cysteine. Further analysis of the modified gammaS-crystallin as tryptic peptides located the modification primarily at Cys 26, with smaller amounts at Cys 24. Tandem mass spectrometry and exact mass measurements showed that the modification was S-methylation. Methylation of proteins has been documented at several other amino acid residues, but S-methylation of cysteine residues has previously been detected only as part of a methyltransferase DNA repair mechanism or at trace amounts in hemoglobin. The high levels of S-methylated cysteines in lens nuclei and the specificity for Cys 26 and Cys 24 suggest the reaction is enzymatically mediated. This modification is particularly important because it blocks disulfide bonding of gammaS-crystallins and, thereby, inhibits formation of the high-molecular weight assemblies associated with cataract. Evidence of more S-methylation in soluble than in insoluble gammaS-crystallins supports the contention that S-methylation of gammaS-crystallin inhibits protein insolubilization and may offer protection against cataract.  相似文献   

2.
Cataract Tohoku (Cat(Tohm)) is a dominant cataract mutation that leads to severe degeneration of lens fiber cells. Linkage analysis showed that the Cat(Tohm) mutation is located on mouse chromosome 10, close to the gene for aquaporin-0 (Aqp0), which encodes a membrane protein that is expressed specifically in lens fiber cells. Sequence analysis of Aqp0 revealed a 12-bp deletion without any change in the reading frame, which resulted in a deletion of four amino acids within the second transmembrane region of the AQP0 protein. Targeted expression of the mutated Aqp0 caused lens opacity in transgenic mice, the pathological severity of which depended on the expression level of the transgene. The mutated AQP0 protein was localized to the intracellular and perinuclear spaces rather than to the plasma membranes of the lens fiber cells. The cataract phenotype of Cat(Tohm) is caused by a gain-of-function mutation in the mutated AQP0 protein and not by a loss-of-function mutation.  相似文献   

3.
Loss of protein thiols is a key feature associated with the onset of age-related nuclear cataract (ARNC), however, little is known about the specific sites of oxidation of the crystallins. We investigated cysteine residues in ARNC lenses and compared them with age-matched normal lenses. Proteomic analysis of tryptic digests revealed ten cysteine residues in older normal lenses that showed no significant oxidation compared to foetal counterparts (Cys 170 in betaA1/3-crystallin, Cys 32 in betaA4-crystallin, Cys 79 in betaB1-crystallin, Cys 22, Cys 78/79, C153 in gammaC-crystallin and Cys 22, Cys 24 and Cys 26 in gammaS-crystallin). Although these thiols were not oxidised in normal lenses past the 6th decade, they were present largely as disulphides in the ARNC lenses. By contrast, two cysteine residues, Cys 41 in gammaC-crystallin and Cys 18 in gammaD-crystallin, were not oxidised, even in advanced ARNC lenses. These cysteines are buried deep within the protein and any unfolding associated with cataract must be insufficient to expose them to the oxidative environment present in the centre of advanced ARNC lenses. The vast majority of the loss of protein thiol observed in such lenses is due to disulphide bond formation.  相似文献   

4.
Francis R  Xu X  Park H  Wei CJ  Chang S  Chatterjee B  Lo C 《PloS one》2011,6(10):e26379
Knockout mice deficient in the gap junction gene connexin43 exhibit developmental anomalies associated with abnormal neural crest, primordial germ cell, and proepicardial cell migration. These migration defects are due to a loss of directional cell movement, and are associated with abnormal actin stress fiber organization and a loss of polarized cell morphology. To elucidate the mechanism by which Cx43 regulates cell polarity, we used a wound closure assays with mouse embryonic fibroblasts (MEFs) to examine polarized cell morphology and directional cell movement. Studies using embryonic fibroblasts from Cx43 knockout (Cx43KO) mice showed Cx43 deficiency caused cell polarity defects as characterized by a failure of the Golgi apparatus and the microtubule organizing center to reorient with the direction of wound closure. Actin stress fibers at the wound edge also failed to appropriately align, and stabilized microtubule (Glu-tubulin) levels were markedly reduced. Forced expression of Cx43 with deletion of its tubulin-binding domain (Cx43dT) in both wildtype MEFs and neural crest cell explants recapitulated the cell migration defects seen in Cx43KO cells. However, forced expression of Cx43 with point mutation causing gap junction channel closure had no effect on cell motility. TIRF imaging revealed increased microtubule instability in Cx43KO cells, and microtubule targeting of membrane localized Cx43 was reduced with expression of Cx43dT construct in wildtype cells. Together, these findings suggest the essential role of Cx43 gap junctions in development is mediated by regulation of the tubulin cytoskeleton and cell polarity by Cx43 via a nonchannel function.  相似文献   

5.
alphaA-crystallin (Cryaa/HSPB4) is a small heat shock protein and molecular chaperone that prevents nonspecific aggregation of denaturing proteins. Several point mutations in the alphaA-crystallin gene cause congenital human cataracts by unknown mechanisms. We took a novel approach to investigate the molecular mechanism of cataract formation in vivo by creating gene knock-in mice expressing the arginine 49 to cysteine mutation (R49C) in alphaA-crystallin (alphaA-R49C). This mutation has been linked with autosomal dominant hereditary cataracts in a four-generation Caucasian family. Homologous recombination in embryonic stem cells was performed using a plasmid containing the C to T transition in exon 1 of the cryaa gene. alphaA-R49C heterozygosity led to early cataracts characterized by nuclear opacities. Unexpectedly, alphaA-R49C homozygosity led to small eye phenotype and severe cataracts at birth. Wild type littermates did not show these abnormalities. Lens fiber cells of alphaA-R49C homozygous mice displayed an increase in cell death by apoptosis mediated by a 5-fold decrease in phosphorylated Bad, an anti-apoptotic protein, but an increase in Bcl-2 expression. However, proliferation measured by in vivo bromodeoxyuridine labeling did not decline. The alphaA-R49C heterozygous and homozygous knock-in lenses demonstrated an increase in insoluble alphaA-crystallin and alphaB-crystallin and a surprising increase in expression of cytoplasmic gamma-crystallin, whereas no changes in beta-crystallin were observed. Co-immunoprecipitation analysis showed increased interaction between alphaA-crystallin and lens substrate proteins in the heterozygous knock-in lenses. To our knowledge this is the first knock-in mouse model for a crystallin mutation causing hereditary human cataract and establishes that alphaA-R49C promotes protein insolubility and cell death in vivo.  相似文献   

6.
The human ortholog of the gene responsible for audiogenic seizure susceptibility in Frings and BUB/BnJ mice (mouse gene symbol Mass1) recently was shown to underlie Usher syndrome type IIC (USH2C). Here we report that the Mass1frings mutation is responsible for the early onset hearing impairment of BUB/BnJ mice. We found highly significant linkage of Mass1 with ABR threshold variation among mice from two backcrosses involving BUB/BnJ mice with mice of strains CAST/EiJ and MOLD/RkJ. We also show an additive effect of the Cdh23 locus in modulating the progression of hearing loss in backcross mice. Together, these two loci account for more than 70% of the total ABR threshold variation among the backcross mice at all ages. The modifying effect of the strain-specific Cdh23ahl variant may account for the hearing and audiogenic seizure differences observed between Frings and BUB/BnJ mice, which share the Mass1frings mutation. During postnatal cochlear development in BUB/BnJ mice, stereocilia bundles develop abnormally and remain immature and splayed into adulthood, corresponding with the early onset hearing impairment associated with Mass1frings. Progressive base-apex hair cell degeneration occurs at older ages, corresponding with the age-related hearing loss associated with Cdh23ahl. The molecular basis and pathophysiology of hearing loss suggest BUB/BnJ and Frings mice as models to study cellular and molecular mechanisms underlying USH2C auditory pathology.  相似文献   

7.
Strain BALB/c and DBA/2 mice were chosen to investigate the effects of genetic background on the radiation-induced mutation rate since they exhibit differences in their radiation sensitivity. Males were exposed to 3 + 3-Gy X-irradiation and mated to untreated specific locus Test-stock females. Offspring resulting from treated spermatogonia were screened for induced specific locus forward and reverse mutations and dominant cataract mutations. Since BALB/c mice are homozygous brown and albino, specific locus forward mutations could be screened at 5 of the 7 specific loci (a, d, se, p, s), while reverse mutations could be screened at the b and c loci. Strain DBA/2 is homozygous non-agouti, brown and dilute. Therefore, specific locus forward mutations could be screened at 4 loci (c, se, p, s) and reverse mutations were screened at the a, b and d loci. Results indicate no effect of genetic background on the sensitivity to mutation induction of specific locus forward mutations, while for the dominant cataract alleles strain DBA/2 exhibited a higher mutation rate than either strain BALB/c or similarly treated (101/El X C3H/El)F1 mice. If, by confirmation, these differences should be demonstrated to be real, it is interesting that strain DBA/2 should exhibit a greater sensitivity to radiation-induced dominant mutations. First, strain DBA/2 was chosen as radiation resistant or repair competent. The observation that DBA/2 exhibited a higher sensitivity to radiation-induced mutation may indicate a role for repair, albeit misrepair, in the mutation process. Second, that the effect of genotype was only observed for the mutation rate to dominant cataract alleles may reflect a difference in the spectrum of DNA alterations which result in dominant or recessive alleles. A dominant allele is more likely misinformation, such that as heterozygote it interferes with the wild-type allele. By comparison, a recessive allele may result from any DNA alteration leading to the loss of a functional gene product. One reverse mutation at each of the a and d loci was recovered in the present experiments. The similarities of the present results for radiation-induced reverse mutations with the extensive data on the spontaneous reverse mutation rates are interesting. Reverse mutations were recovered only at the a and d loci. Further, the reverse mutations recovered at the a locus were to alternate alleles (at, Aw or Asy) while true reverse mutations were apparently recovered at the d locus.  相似文献   

8.
gammaS-crystallin is a major human lens protein found in the outer region of the eye lens, where the refractive index is low. Because crystallins are not renewed they acquire post-translational modifications that may perturb stability and solubility. In common with other members of the betagamma-crystallin superfamily, gammaS-crystallin comprises two similar beta-sheet domains. The crystal structure of the C-terminal domain of human gammaS-crystallin has been solved at 2.4 A resolution. The structure shows that in the in vitro expressed protein, the buried cysteines remain reduced. The backbone conformation of the "tyrosine corner" differs from that of other betagamma-crystallins because of deviation from the consensus sequence. The two C-terminal domains in the asymmetric unit are organized about a slightly distorted 2-fold axis to form a dimer with similar geometry to full-length two-domain family members. Two glutamines found in lattice contacts may be important for short range interactions in the lens. An asparagine known to be deamidated in human cataract is located in a highly ordered structural region.  相似文献   

9.
This report presents a study of cataracts seen in a random-bred strain of Swiss mice with Balb/c mice used as a control group. The embryonic development, and histological and slit lamp observations of the lenses in the two groups of animals are contrasted. The cataract is dominant in its inheritance (Tissot, '62). It appears either unilaterally or bilaterally as a dense white opacity in the lens substance. The earliest sign of abnormal formation occurs at 14 days of embryonic development. This is associated with a defect in the primary lens fibers formation. Progressive degeneration of these fibers occurs until they are reduced to a mass of cellular debris seen at the last day of gestation. The secondary fibers are also laid down in an abnormal manner. The normal lamellar arrangement of the secondary fibers is not seen in cataractous lenses. The abnormal lens fiber development leads to progressive vacuolization. The mature cataract seen in the adult is filled with many vacuoles, the largest ones occurring at the equatorial region. The nuclear region consists of a clumpy eosinophilic mass with scattered calcified areas. The rate of growth of the secondary fibers is different from that of the normal group. Most of the mature cataracts in the adult contain a vascularized epithelium. There are three possible areas of primary involvement which may lead to the development of the cataract. This are: (1) A defect in the development of the primary lens fibers; (2) A defect in the development of the secondary lens fibers; (3) An abnormal lens epithelium which may interfere with nutrition of the lens and thus initiate cataract formation.  相似文献   

10.
A substrain of mice originating from the CF#1 strain (an outbred colony) reared at Osaka Prefecture University (CF#1/lr mice) develops cataracts beginning at 4 weeks of age. Affected mice were fully viable and fertile and developed cataracts by 14 weeks of age. Histologically, CF#1/lr mice showed vacuolation of the lens cortex, swollen lens fibers, lens rupture and nuclear extrusion. To elucidate the mode of inheritance, we analyzed heterozygous mutant hybrids generated from CF#1/lr mice and wild-type BALB/c mice. None of the heterozygous mutants were affected, and the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. For the initial genome-wide screening and further mapping, we used affected progeny of CF#1/lr × (CF#1/lr × BALB/c) mice. We concluded that the cataracts in CF#1/lr mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 3 between D3Mit79 and D3Mit216. In this region, we identified 8 genes associated with ocular disease. All 8 genes were sequenced and a novel point mutation (1 bp insertion of cytosine) in exon 7 of the Bcar3 gene was identified. This mutation produced a premature stop codon and a truncated protein. In conclusion, we have identified the first spontaneous mutation in the Bcar3 gene associated with lens extrusion cataracts. This novel cataract model may provide further knowledge of the molecular biology of cataractogenesis and the function of the BCAR3 protein.  相似文献   

11.
A spontaneous mutation in BALB/c mice that causes congenital dense cataract and microphthalmia (dcm) was reported previously. This abnormality was found to be inheritable and the mode of inheritance indicated that this phenotype is due to mutation of an autosomal recessive gene. We performed genetic screen to identify the underlying mutations through linkage analysis with the dcm progenies of F1 intercross. We identified the region of mutation on chromosome 3 and further mapping and sequence analysis identified the mutation in the GJA8 gene that encodes for connexin 50. The mutation represents a single nucleotide change at position 64 (G to C) that results in a change in the amino acid glycine to arginine at position 22 (G22R) and is identical to the mutation previously characterized as lop10. However, the phenotype of these mice differ from that of lop10 mice and since it is one of the very few genetic models with recessive pattern of inheritance, we propose that dcm mice can serve as a useful model for studying the dynamics and interaction of the gap junction formation in mouse eye development.  相似文献   

12.
Jack Favor 《Mutation research》1983,110(2):367-382
Mice were derived from parental males treated with 250 mg ethylnitrosourea per kg body weight. The mice were screened simultaneously for induced dominant cataract and recessive specific-locus mutations. In the spermatogonial treatment group, 16 dominant cataract, 1 dominant corneal opacity and 60 recessive specific-locus mutations were recovered and genetically confirmed in 9352 offspring observed. This lower yield of dominant cataract mutations, when compared with the yield of recessive specific-locus mutations, is similar to results observed by Kratochvilova in a series of experiments on dominant cataract mutations induced by radiation treatment. These results taken with reported results from other dominant mutation test systems, suggest a lower per-locus mutation rate to dominant than to recessive alleles. A corollary to the hypothesis that most dominantly expressed alleles code for an alteration in the function of the normal gene product is that a limited subset of mutations could normally lead to a dominantly expressed mutation. This may explain the lower per-locus mutation rate to dominant than to recessive alleles.

Genetic confirmation tests of recovered presumed dominant cataract mutations indicate that a certain category of phenotypic variants (bilateral, severe or unique lens opacity) is likely to be a true mutation but only represents 7 of the 19 mutations recovered. A second category of phenotypic variants (unilateral, neither severe nor unique lens opacity) has an extremely low probability of being a true mutation. Only 1 confirmed mutation in 181 phenotypic variants was obtained. The remaining category of phenotypic variants (either unilateral severe or unique, or bilateral neither severe nor unique lens opacity) represented the majority, 11, of the confirmed mutations obtained. However, 266 presumed mutations in this category were recovered. If a sub-class of phenotypic variants within this category could be identified that could be ignored owing to a very low probability of being a true mutation, the efficiency of recovery of confirmed dominant cataract mutations would be greatly increased with no sacrifice in the accuracy of the observed mutation rate.

Finally, the 17 confirmed dominant cataract mutations obtained included a class of 7 that produced significantly fewer than the Mendelian expectation of offspring exhibiting the mutant phenotype. This class probably represents both mutations with penetrance effects and mutations with viability effects.

The present experiments represent the first systematic comparison of induced genetically confirmed dominant and recessive mutations for a chemical mutagen in mice. Such results contribute to our limited understanding of the mutation process to dominant alleles.  相似文献   


13.
We describe a new spontaneous mutation in BALB/c mice that causes abnormal phenotype, such as congenital cataract and microphthalmia. This abnormality was found to be inheritable because offspring with the same abnormality were produced by backcrossing the abnormal male to its normal female parent. Results of various crosses made to determine the mode of inheritance indicated that this abnormality is attributable to mutation of an autosomal recessive gene. Slit lamp examination of the mutant eyes revealed total lenticular opacity, disturbed typical iris pattern, and abnormal pupillary muscle development. Histologic changes in mutant eyes between gestation day 13 and postnatal day 1 indicated various eye and lens abnormalities, including microphthalmia; underdeveloped iris, optic stalk, cornea, and retina; degenerated lens fibers with lost fibrillar structure; and vacuoles of various sizes at the posterior border of the lens. Mild opacity of the lens was found to progress with age and became denser, resembling mature cataract, and occupying the lens completely at the age of six to eight weeks. We, therefore, temporarily designated this abnormality as dense cataract and microphthalmia, with the gene symbol dcm.  相似文献   

14.
Conformational change and aggregation of native proteins are associated with many serious age-related and neurological diseases. γS-Crystallin is a highly stable, abundant structural component of vertebrate eye lens. A single F9S mutation in the N-terminal domain of mouse γS-crystallin causes the severe Opj cataract, with disruption of cellular organization and appearance of fibrillar structures in the lens. Although the mutant protein has a near-native fold at room temperature, significant increases in hydrogen/deuterium exchange rates were observed by NMR for all the well-protected β-sheet core residues throughout the entire N-terminal domain of the mutant protein, resulting in up to a 3.5-kcal/mol reduction in the free energy of the folding/unfolding equilibrium. No difference was detected for the C-terminal domain. At a higher temperature, this effect further increases to allow for a much more uniform exchange rate among the N-terminal core residues and those of the least well-structured surface loops. This suggests a concerted unfolding intermediate of the N-terminal domain, while the C-terminal domain stays intact. Increasing concentrations of guanidinium chloride produced two transitions for the Opj mutant, with an unfolding intermediate at ∼ 1 M guanidinium chloride. The consequence of this partial unfolding, whether by elevated temperature or by denaturant, is the formation of thioflavin T staining aggregates, which demonstrated fibril-like morphology by atomic force microscopy. Seeding with the already unfolded protein enhanced the formation of fibrils. The Opj mutant protein provides a model for stress-related unfolding of an essentially normally folded protein and production of aggregates with some of the characteristics of amyloid fibrils.  相似文献   

15.
Cadherin 23 (CDH23) is an important constituent of the hair cell tip link in the organ of Corti. Mutations in cdh23 are associated with age-related hearing loss (AHL). In this study, we proposed that the Cdh23(nmf308/nmf308) mice with progressive hair cell loss had specific morphological changes and suffered a base to apex gradient and age-related hearing loss, and that mutations in cdh23 were linked to AHL. The Cdh23(nmf308/nmf308) mice produced by the N-nitrosourea (ENU) mutagenesis program were used as an animal model to study AHL and progressive hair cell loss. RT-PCR was performed to confirm the cdh23 mutation in Cdh23(nmf308/nmf308) mice and genetic analysis was used to map the specific mutation site. Distortion product otoacoustic emission (DPOAE) assay and acoustic brainstem evoked response (ABR) threshold analysis were carried out to evaluate the AHL. Cochlear histology was examined with scanning electron microscope (SEM) and transmission electron microscope (TEM), as well as the nuclear labeling by propidium iodide staining; terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and caspase-3 activities were examined to evaluate cell apoptosis. Genetic mapping identified the candidate gene linking AHL in Cdh23(nmf308/nmf308) mice as cdh23. A mutation in exon3 (63 T>C) was screened as compared with the sequence of the same position of the gene from B6 (+/+) mice. The cochleae outer hair cells were reduced from 5-10% at one month to 100% at three months in the basal region. DPOAE and ABR exhibited an increasing threshold at high frequencies (≥16kHz) from one month of age. Morphological and cellular analysis showed that Cdh23(nmf308/nmf308) mice exhibited a time course of histological alterations and cell apoptosis of outer hair cells. Our results suggest that the cdh23 mutation may be harmful to the stereociliary tip link and cause the hair cell apoptosis. Due to the same cdh23 mutations in human subjects with presbycusis (Petit et al., 2001; Zheng et al., 2005), the Cdh23(nmf308/nmf308) mouse is an excellent animal model for investigating the mechanisms involved in human AHL.  相似文献   

16.
The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and daughter ensures that the yeast strain remains immortal. To understand the mechanisms underlying age asymmetry, we have isolated temperature-sensitive mutants that have limited growth capacity. One of these clonal-senescence mutants was in ATP2, the gene encoding the beta-subunit of mitochondrial F(1), F(0)-ATPase. A point mutation in this gene caused a valine-to-isoleucine substitution at the ninetieth amino acid of the mature polypeptide. This mutation did not affect the growth rate on a nonfermentable carbon source. Life-span determinations following temperature shift-down showed that the clonal-senescence phenotype results from a loss of age asymmetry at 36 degrees, such that daughters are born old. It was characterized by a loss of mitochondrial membrane potential followed by the lack of proper segregation of active mitochondria to daughter cells. This was associated with a change in mitochondrial morphology and distribution in the mother cell and ultimately resulted in the generation of cells totally lacking mitochondria. The results indicate that segregation of active mitochondria to daughter cells is important for maintenance of age asymmetry and raise the possibility that mitochondrial dysfunction may be a normal cause of aging. The finding that dysfunctional mitochondria accumulated in yeasts as they aged and the propensity for old mother cells to produce daughters depleted of active mitochondria lend support to this notion. We propose, more generally, that age asymmetry depends on partition of active and undamaged cellular components to the progeny and that this "filter" breaks down with age.  相似文献   

17.
Adult C57BL/6J male mice homozygous for the mutant gene, juvenile spermatogonial depletion (jsd/jsd), show azoosper4ia and testes reduced to one-third normal size, but are otherwise phenotypically normal. In contrast, adult jsd/jsd females are fully fertile. This feature facilitated mapping the jsd gene to the centromeric end of chromosome 1; the gene order is jsd-Isocitrate dehydrogenase-1 (Idh-1)-Peptidase-3 (Pep-3). Analysis of testicular histology from jsd/jsd mice aged 3-10 wk revealed that these mutant mice experience one wave of spermatogenesis, but fail to continue mitotic proliferation of type A spermatogonial cells at the basement membrane. As a consequence, histological sections of testes from mutant mice aged 8-52 wk showed tubules populated by modest numbers of Sertoli cells, with only an occasional spermatogonial cell. Some sperm with normal morphology and motility were observed in epididymides of 6.5- but not in 8-wk or older mutants. Treatment with retinol failed to alter the loss of spermatogenesis in jsd/jsd mice. Analyses of serum hormones of jsd/jsd males showed that testosterone levels were normal at all ages--a finding corroborated by normal seminal vesicle and vas deferens weights, whereas serum follicle-stimulating hormone levels were significantly elevated in mutant mice from 4 to 20 wk of age. We hypothesize the jsd/jsd male may be deficient in proliferative signals from Sertoli cells that are needed for spermatogenesis.  相似文献   

18.
Risk estimation based on germ-cell mutations in animals   总被引:4,自引:0,他引:4  
J Favor 《Génome》1989,31(2):844-852
The set of mouse germ cell mutation rate results following spermatogonial exposure to high dose rate irradiation have been presented as the most relevant experimental results upon which to extrapolate the expected genetic risk of offspring of the survivors of the Hiroshima and Nagasaki atomic bombings. Results include mutation rates to recessive specific-locus, dominant cataract, protein-charge, and enzyme-activity alleles. The mutability as determined by the various genetic end points differed: the mutation rates to recessive specific-locus alleles and enzyme-activity alleles were similar and greater than the mutation rates to dominant cataract and protein-charge alleles. It is argued that the type of mutation event scored by a particular test will determine the mutability of the genetic end point screened. When the loss of functional gene product can be scored in a particular mutation test, as in the recessive specific-locus and enzyme-activity tests, a wide spectrum of DNA alterations may result in a loss of and a higher mutation rate is observed. When an altered gene product is scored, as in the dominant cataract and protein-charge tests, a narrower spectrum of DNA alterations is screened and a lower mutation rate is observed. The radiation doubling dose, defined as the dose that induces as many mutations as occur spontaneously per generation, was shown to be four times higher in the dominant cataract test than the specific-locus test. These results indicate that to extrapolate to genetic risks in humans using the doubling-dose method, the extrapolation must be based on experimental mutation rate results for the same genetic end point.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Age-associated activation of epigenetically repressed genes in the mouse   总被引:12,自引:0,他引:12  
  相似文献   

20.
Fibrotic posterior capsular opacification (PCO), one of the major complications of cataract surgery, occurs when lens epithelial cells (LCs) left behind post cataract surgery (PCS) undergo epithelial to mesenchymal transition, migrate into the optical axis and produce opaque scar tissue. LCs left behind PCS robustly produce fibronectin, although its roles in fibrotic PCO are not known. In order to determine the function of fibronectin in PCO pathogenesis, we created mice lacking the fibronectin gene (FN conditional knock out -FNcKO) from the lens. While animals from this line have normal lenses, upon lens fiber cell removal which models cataract surgery, FNcKO LCs exhibit a greatly attenuated fibrotic response from 3 days PCS onward as assessed by a reduction in surgery-induced cell proliferation, and fibrotic extracellular matrix (ECM) production and deposition. This is correlated with less upregulation of Transforming Growth Factor β (TGFβ) and integrin signaling in FNcKO LCs PCS concomitant with sustained Bone Morphogenetic Protein (BMP) signaling and elevation of the epithelial cell marker E cadherin. Although the initial fibrotic response of FNcKO LCs was qualitatively normal at 48 h PCS as measured by the upregulation of fibrotic marker protein αSMA, RNA sequencing revealed that the fibrotic response was already quantitatively attenuated at this time, as measured by the upregulation of mRNAs encoding molecules that control, and are controlled by, TGFβ signaling, including many known markers of fibrosis. Most notably, gremlin-1, a known regulator of TGFβ superfamily signaling, was upregulated sharply in WT LCs PCS, while this response was attenuated in FNcKO LCs. As exogenous administration of either active TGFβ1 or gremlin-1 to FNcKO lens capsular bags rescued the attenuated fibrotic response of fibronectin null LCs PCS including the loss of SMAD2/3 phosphorylation, this suggests that fibronectin plays multifunctional roles in fibrotic PCO development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号