共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social science and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this article, we consider multilevel latent class models, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the expectation‐maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less‐efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the obsessive compulsive disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for LCA of multilevel data. 相似文献
2.
Summary Traditional latent class modeling has been widely applied to assess the accuracy of dichotomous diagnostic tests. These models, however, assume that the tests are independent conditional on the true disease status, which is rarely valid in practice. Alternative models using probit analysis have been proposed to incorporate dependence among tests, but these models consider restricted correlation structures. In this article, we propose a probit latent class model that allows a general correlation structure. When combined with some helpful diagnostics, this model provides a more flexible framework from which to evaluate the correlation structure and model fit. Our model encompasses several other PLC models but uses a parameter‐expanded Monte Carlo EM algorithm to obtain the maximum‐likelihood estimates. The parameter‐expanded EM algorithm was designed to accelerate the convergence rate of the EM algorithm by expanding the complete‐data model to include a larger set of parameters and it ensures a simple solution in fitting the PLC model. We demonstrate our estimation and model selection methods using a simulation study and two published medical studies. 相似文献
3.
Some failure time data come from a population that consists of some subjects who are susceptible to and others who are nonsusceptible to the event of interest. The data typically have heavy censoring at the end of the follow-up period, and a standard survival analysis would not always be appropriate. In such situations where there is good scientific or empirical evidence of a nonsusceptible population, the mixture or cure model can be used (Farewell, 1982, Biometrics 38, 1041-1046). It assumes a binary distribution to model the incidence probability and a parametric failure time distribution to model the latency. Kuk and Chen (1992, Biometrika 79, 531-541) extended the model by using Cox's proportional hazards regression for the latency. We develop maximum likelihood techniques for the joint estimation of the incidence and latency regression parameters in this model using the nonparametric form of the likelihood and an EM algorithm. A zero-tail constraint is used to reduce the near nonidentifiability of the problem. The inverse of the observed information matrix is used to compute the standard errors. A simulation study shows that the methods are competitive to the parametric methods under ideal conditions and are generally better when censoring from loss to follow-up is heavy. The methods are applied to a data set of tonsil cancer patients treated with radiation therapy. 相似文献
4.
Anton K. Formann 《Biometrical journal. Biometrische Zeitschrift》1982,24(2):171-190
In the present paper the linear logistic extension of latent class analysis is described. Thereby it is assumed that the item latent probabilities as well as the class sizes can be attributed to some explanatory variables. The basic equations of the model state the decomposition of the log-odds of the item latent probabilities and of the class sizes into weighted sums of basic parameters representing the effects of the predictor variables. Further, the maximum likelihood equations for these effect parameters and statistical tests for goodness-of-fit are given. Finally, an example illustrates the practical application of the model and the interpretation of the model parameters. 相似文献
5.
This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables influence a second set of observed variables. The research is motivated by a repeated measurement study using a random coefficient model to assess the influence of latent growth trajectory class membership on the probability of a binary disease outcome. More generally, this model can be seen as a combination of latent class modeling and conventional mixture modeling. The EM algorithm is used for estimation. As an illustration, a random-coefficient growth model for the prediction of alcohol dependence from three latent classes of heavy alcohol use trajectories among young adults is analyzed. 相似文献
6.
7.
Generalized linear models with serial dependence are often used for short longitudinal series. Heagerty (2002, Biometrics58, 342-351) has proposed marginalized transition models for the analysis of longitudinal binary data. In this article, we extend this work to accommodate longitudinal ordinal data. Fisher-scoring algorithms are developed for estimation. Methods are illustrated on quality-of-life data from a recent colorectal cancer clinical trial. 相似文献
8.
The diagnosis/prognosis problem has already been introduced by the authors in previous papers as a classification problem for survival data. In this paper, the specific aspects of the estimation of the survival functions in diagnostic classes and the evaluation of the posterior probabilities of the diagnostic classes are addressed; a latent random variable Z is defined to denote the classification of censored and uncensored individuals, where early censored individuals cannot be immediately classified as Z is not observed. Parameter estimation of the mixture survival model thus derived is carried out using a proper version of the EM algorithm with given prior probabilities on Z and diagnostic/prognostic information provided by the observable covariates is also included into the model. Numerical examples using AIDS data and a simulation study are used to better outline the main features of the model and of the estimation methodology. 相似文献
9.
We propose a new class of models, transition measurement error models, to study the effects of covariates and the past responses on the current response in longitudinal studies when one of the covariates is measured with error. We show that the response variable conditional on the error-prone covariate follows a complex transition mixed effects model. The naive model obtained by ignoring the measurement error correctly specifies the transition part of the model, but misspecifies the covariate effect structure and ignores the random effects. We next study the asymptotic bias in naive estimator obtained by ignoring the measurement error for both continuous and discrete outcomes. We show that the naive estimator of the regression coefficient of the error-prone covariate is attenuated, while the naive estimators of the regression coefficients of the past responses are generally inflated. We then develop a structural modeling approach for parameter estimation using the maximum likelihood estimation method. In view of the multidimensional integration required by full maximum likelihood estimation, an EM algorithm is developed to calculate maximum likelihood estimators, in which Monte Carlo simulations are used to evaluate the conditional expectations in the E-step. We evaluate the performance of the proposed method through a simulation study and apply it to a longitudinal social support study for elderly women with heart disease. An additional simulation study shows that the Bayesian information criterion (BIC) performs well in choosing the correct transition orders of the models. 相似文献
10.
An important problem in agronomy is the study of longitudinal data on the growth curve of the weight of cattle through time, possibly taking into account the effect of other explanatory variables such as treatments and time. In this paper, a Bayesian approach for analysing longitudinal data is proposed. It takes into account regression structures on the mean and the variance‐covariance matrix of normal observations. The approach is based on the modeling strategy suggested by Pourahmadi (1999, Biometrika 86, 667–690). After revising this methodology, we present the Bayesian approach used to fit the models, based on a generalization of the Metropolis‐Hastings algorithm of Cepeda and Gamerman (2000, Brazilian Journal of Probability and Statistics, 14 , 207–221). The approach is used to the study of growth and development of a group of deaf children. The paper is concluded with a few proposed extensions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
Hierarchical likelihood approach for frailty models 总被引:5,自引:0,他引:5
12.
13.
We propose an extension of the latent class model for the analysis of capture-recapture data which allows us to take into account the effect of a capture on the behavior of a subject with respect to future captures. The approach is based on the assumption that the variable indexing the latent class of a subject follows a Markov chain with transition probabilities depending on the previous capture history. Several constraints are allowed on these transition probabilities and on the parameters of the conditional distribution of the capture configuration given the latent process. We also allow for the presence of discrete explanatory variables, which may affect the parameters of the latent process. To estimate the resulting models, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. We also give some simple rules for point and interval estimation of the population size. The approach is illustrated by applying it to two data sets concerning small mammal populations. 相似文献
14.
In epidemiology, capture–recapture models are commonly used to estimate the size of an unknown population based on several incomplete lists of individuals. The method operates under two main assumptions: independence between the lists (local independence) and homogeneity of capture probabilities of individuals. In practice, these assumptions are rarely satisfied. We introduce a multinomial latent class model that can account for both list dependence and heterogeneity. Parameter estimation is performed by maximizing the conditional likelihood function with the use of the EM algorithm. In addition, a new approach for evaluating the standard errors of the parameter estimates is discussed, which considerably reduces the computational burden associated with the evaluation of the variance of the population size estimate. 相似文献
15.
16.
Daniel Gianola J?rgen ?eg?rd Bj?rg Heringstad Gunnar Klemetsdal Daniel Sorensen Per Madsen Just Jensen Johann Detilleux 《遗传、选种与进化》2004,36(1):3-27
A Gaussian mixture model with a finite number of components and correlated random effects is described. The ultimate objective is to model somatic cell count information in dairy cattle and to develop criteria for genetic selection against mastitis, an important udder disease. Parameter estimation is by maximum likelihood or by an extension of restricted maximum likelihood. A Monte Carlo expectation-maximization algorithm is used for this purpose. The expectation step is carried out using Gibbs sampling, whereas the maximization step is deterministic. Ranking rules based on the conditional probability of membership in a putative group of uninfected animals, given the somatic cell information, are discussed. Several extensions of the model are suggested. 相似文献
17.
Zheng Q 《Mathematical biosciences》2005,196(2):198-214
Fluctuation analysis is the most widely used approach in estimating microbial mutation rates. Development of methods for point and interval estimation of mutation rates has long been hampered by lack of closed form expressions for the probability mass function of the number of mutants in a parallel culture. This paper uses sequence convolution to derive exact algorithms for computing the score function and observed Fisher information, leading to efficient computation of maximum likelihood estimates and profile likelihood based confidence intervals for the expected number of mutations occurring in a test tube. These algorithms and their implementation in SALVADOR 2.0 facilitate routine use of modern statistical techniques in fluctuation analysis by biologists engaged in mutation research. 相似文献
18.
We examine issues in estimating population size N with capture-recapture models when there is variable catchability among subjects. We focus on a logistic-normal mixed model, for which the logit of the probability of capture is an additive function of a random subject and a fixed sampling occasion parameter. When the probability of capture is small or the degree of heterogeneity is large, the log-likelihood surface is relatively flat and it is difficult to obtain much information about N. We also discuss a latent class model and a log-linear model that account for heterogeneity and show that the log-linear model has greater scope. Models assuming homogeneity provide much narrower intervals for N but are usually highly overly optimistic, the actual coverage probability being much lower than the nominal level. 相似文献
19.
We extend the proportional hazards model to a two-level model with a random intercept term and random coefficients. The parameters in the multilevel model are estimated by a combination of EM and Newton-Raphson algorithms. Even for samples of 50 groups, this method produces estimators of the fixed effects coefficients that are approximately unbiased and normally distributed. Two different methods, observed information and profile likelihood information, will be used to estimate the standard errors. This work is motivated by the goal of understanding the determinants of contraceptive use among Nepalese women in the Chitwan Valley Family Study (Axinn, Barber, and Ghimire, 1997). We utilize a two-level hazard model to examine how education and access to education for children covary with the initiation of permanent contraceptive use. 相似文献
20.