共查询到20条相似文献,搜索用时 0 毫秒
1.
Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells 总被引:11,自引:0,他引:11
Tumor-stroma interactions play a significant role in tumor development and progression. Alterations in the stromal microenvironment, including enhanced vasculature (angiogenesis), modified extracellular matrix composition, inflammatory cells, and dys-balanced protease activity, are essential regulatory factors of tumor growth and invasion. Differential modulation of stromal characteristics is induced by epithelial skin tumor cells depending on their transformation stage when grown as surface transplants in vivo. Tumor cells can regulate the development of a "tumor-stroma" via the aberrant expression of growth factors or induction of growth factor receptors in the stromal compartment. In this context, secretion of the hematopoietic growth factors G-CSF and GM-CSF, constituitively expressed in enhanced malignant tumors, may be good candidates for induction of a tumor stroma through their effect on inflammatory cells. Upon its induction, the tumor stroma will reciprocally influence the differentiation status of tumor cells resulting in a normalization of benign tumor epithelia and the maintenance of a malignant phenotype, respectively. In the HaCaT model for squamous cell carcinoma of the skin, stromal activation and angiogenesis are transient in pre-malignant transplants, however they remain persistent in malignant transplants where progressive angiogenesis is closely correlated with tumor invasion. While continued expression of VEGF and PDGF are associated with benign tumor phenotypes, activation of VEGFR-2 is a hallmark of malignant tumors and accompanies ongoing angiogenesis and tumor invasion. As a consequence the inhibition of ongoing angiogenesis by blocking VEGFR-2 signalling resulted in dramatically impaired malignant tumor expansion and invasion. Comparably, tumor vascularization and invasion was blocked by disturbing the balance of matrix protease activity caused by a lack of PAI-1 in the stromal cells of the knockout mouse hosts. A similar inhibition of tumor vascularization was caused by TSP-1 over-expression in skin carcinoma cells, which also blocked tumor invasion and expansion. On the other hand, when granulation tissue and angiogenesis were only transiently activated as a result of stable transfection of PDGF into non-tumorigenic HaCaT cells, the target cells formed benign, but not malignant, tumors. Collectively, these data show that tumor vascularization, providing intimate association of blood vessels with tumor cells, is a prerequisite for tumor invasion. A potential mechanism for this interrelationship may be the differential regulation of MMP-expression in tumors of different grades of malignancy. In vitro MMP expression did not discriminate between benign and malignant tumor cells unless they were co-cultured with stromal fibroblasts. However, in vivo regulation of MMP expression was clearly dependent on tumor phenotype. While MMP-1 and MMP-13 were down-regulated in benign transplants, they were persistently up-regulated in malignant ones. A tight balance between proteases and their inhibitors is crucial for both the formation and infiltration of blood vessels and for tumor cell invasion, thus again emphasizing the importance of the stromal compartment for the development and progression of carcinomas. 相似文献
2.
肿瘤细胞侵袭研究进展 总被引:5,自引:0,他引:5
肿瘤细胞侵袭和转移是癌医学和癌生物学最重要的难题,癌症主要因其肿瘤细胞的侵袭和转移而成为致命的疾病,虽然侵袭和转移的机制仍不清楚,但肿瘤细胞侵袭一直是研究热点,本文就近年来对肿瘤细胞侵袭研究的新进展进行综述,以期为寻找治疗肿瘤的新方案提供参考. 相似文献
3.
The effect of pretreatment of 51Cr-labelled lymph node cells with neuraminidase, trypsin, phospholipase A, Con A and LPS on their fate in intact and splenectomized recipients following intravenous injections was studied. Decreased lymph node entry was observed in all experimental groups in which intact mice were used as recipients. Evidence for this decrease to be the result of a change in the interaction of the circulating cells with the cells in the liver, lungs or spleen and not the result of a specific defect of the interaction between the lympocytes and the post-capillary venule endothelium is presented and discussed. 相似文献
4.
Cell migration is central to normal physiology in embryogenesis, the inflammatory response and wound healing. In addition, the acquisition of a motile and invasive phenotype is an important step in the development of tumors and metastasis. Arf GTPase-activating proteins (GAPs) are nonredundant regulators of specialized membrane surfaces implicated in cell migration. Part of Arf GAP function is mediated by regulating the ADP ribosylation factor (Arf) family GTP-binding proteins. However, Arf GAPs can also function independently of their GAP enzymatic activity, in some cases working as Arf effectors. In this commentary, we discuss examples of Arf GAPs that function either as regulators of Arfs or independently of the GTPase activity to regulate membrane structures that mediate cell adhesion and movement.Key words: Arf GAP, Arf, effector, ADP-ribosylation factor, GTPase-activating protein, focal adhesions, podosomes, invadopodia, cell migrationCell migration involves adhesive structures in which the cell membrane is integrated with the actin cytoskeleton.1 Cells acquire a spatial asymmetry to enable them to turn intracellular generated forces into a net cell body translocation. With the asymmetry, there is a clear distinction between the cell front and rear. Active membrane processes, including lamellipodia and filopodia, take place primarily around the cell front. Extension of both filopodia and lamellipodia is coupled with local actin polymerization, which generates protrusive force. In some cells, focal complexes form at the leading edge of lamellipodia and filopodia. Focal complexes are specialized surfaces of the plasma membrane that mediate attachment to the substratum, providing traction and allowing the cell edge to protrude. Focal complexes mature with cell migration to form another specialized surface in the plasma membrane, focal adhesions (FAs). FAs localize to the termini of stress fiber bundles and serve in longer-term anchorage at the rear of the cell.2 A contractile force is generated at the rear of the cell by the myosin motors to move the cell forward and cell-substratum (extracellular matrix) attachments are released to retract the cell rear. In some cells, podosomes are adhesive structures that mediate cell migration and sometimes invasion.The structures involved in cell migration that are affected by Arf GAPs are FAs, podosomes and invadopodia. FAs contain multiple proteins, including integrins, which are transmembrane proteins.3 The extracellular part of integrins binds to the extracellular matrix. The cytoplasmic domains of integrins associate with multiple signaling proteins as well as proteins that are part of the actin cytoskeleton, thereby coordinating signaling events involved in cell migration and linking the extracellular matrix to the cytoskeleton. Cytoplasmic proteins critical to the function of FAs and that are often used as markers of FAs include vinculin, paxillin and focal adhesion kinase. At least five distinct Arf GAPs have been found to associate with FAs, including GIT1, GIT2, ASAP1, ASAP3 and ARAP2.4Podosomes and invadopodia are related structures induced by action of Src (reviewed in ref. 5). They contain some proteins in common with FAs, but do have some differences that likely reflect different function and/or regulation. For example, podosomes contain ASAP1 but not ASAP3.6 Podosomes and invadopodia have not been examined for the presence of other Arf GAPs. Like FAs, podosomes and invadopodia mediate adhesion to extracellular surfaces. In addition, they are points of degradation of the extracellular matrix and may transfer tension along the extracellular matrix to enable the cell to move. Consistent with the function in motility, podosomes and invadopodia are dynamic structures, turning over in minutes. Podosomes are found in normal physiology of cells including smooth muscle cells, osteoclasts and macrophages and in Src-transformed fibroblasts. Invadopodia are observed in transformed cells, such as cells derived from breast cancers.Two families of GTP-binding proteins within the Ras superfamily, Rho and Arf, are involved in both actin and membrane remodeling. RhoA regulates stress fibers (bundles of actin filaments that traverse the cell and are linked to the extracellular matrix through FAs) and the assembly of FAs.7 Rac1 regulates membrane ruffling and lamellipodia formation.8 Cdc42 regulates filopodia formation.9 Activation of Cdc42 has been shown to lead to the sequential activation of Rac1 and then RhoA in growth factor stimulated fibroblasts.Arf proteins regulate membrane traffic and the actin cytoskeleton.10 There are six mammalian Arf proteins, divided into three classes based on their amino-acid sequence. Arf12 and 3 are class I, Arf4 and Arf5 are class II and Arf6 is the single member of the class III group. Arf1 and Arf6 have been the most extensively studied. Most work has focused on Arf1 function in the Golgi apparatus and endocytic compartments although Arf1 has been found to affect paxillin recruitment to FAs and trafficking of epidermal growth factor receptor from the plasma membrane. Arf6 affects the endocytic pathway and the peripheral actin cytoskeleton.The function of Rho and Arf family proteins depends on a cycle of binding and hydrolyzing GTP. However, Rho and Arf family proteins have slow intrinsic nucleotide exchange. Rho family proteins have slow intrinsic GTPase activity and Arf family proteins have no detectable intrinsic GTPase activity. The cycle of GTP binding and hydrolysis is driven by accessory proteins called guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho family proteins are also regulated by guanine nucleotide dissociation inhibitors, which prevent spontaneous activation in the cytoplasm.Arf GAPs are enzymes that catalyze the hydrolysis of GTP bound to Arf proteins, thereby converting Arf•GTP to Arf•GDP. Thirty-one genes in human encode proteins with Arf GAP domains (Fig. 1). The Arf GAP family is divided into ten subgroups based on domain structure and phylogenetic analysis.11 Six subgroups contain the Arf GAP domain at the N-terminus of the protein. Four groups contain a tandem of a PH, Arf GAP and Ankyrin repeat domains. The Arf GAP nomenclature is mostly based on the protein domain structure. For instance, the ASAP first identified, ASAP1, contains Arf GAP, SH3, Ank repeat and PH domains; ARAPs contain Arf GAP, Rho GAP, Ank repeat and PH domains; ACAPs contain Arf GAP, coiled-coil (later identified as BAR domain), Ank repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, Ank repeat and PH domains.Open in a separate windowFigure 1Domain structure of the Arf GAP family. The schematic representation of the ten groups of proteins containing the Arf GAP domain is not drawn to scale. Abbreviations used are: ALPS, ArfGAP1 lipid-packing sensor domain; Ank, Ankyrin repeats; Arf GAP, Arf GTPase activating domain; BAR, Bin/Amphiphysin/Rvs domain; CALM, CALM binding domain; CB, clathrin box; CC, coiled-coiled domain; FG repeats, multiple copies of the XXFG motif; GLD, GTP-binding protein-like domain; PBS, paxillin binding site; PH, pleckstrin homology domain; Pro (PxxP)3, cluster of three proline-rich (PxxP) motifs; Pro (D/ELPPKP)8, eigth tandem Prolin-rich (D/ELPPKP) motifs; RA, Ras association motif; Rho GAP, Rho GTPase activating domain; SAM, sterile α-motif; SH3, Src homology 3 domain; SHD, Spa homology domain. *ASAP2 and ASAP3 lack the Pro (D/ELPPKP)8 motifs. ASAP3 has no SH3 domain. &AGAP2 has a splice variant with three N-terminal PxxP motifs, called PIKE-L. @ARAP2 has an inactive Rho GAP domain.The subcellular localization and function of a number of Arf GAPs have been identified. Arf GAP1, Arf GAP2 and Arf GAP3 are found in the Golgi apparatus where they control membrane traffic by regulating Arf1•GTP levels.12,13 Arf GAP1 has also been proposed to directly contribute to the formation of transport intermediates.14 SMAPs and AGAP1 and AGAP2 are associated with endosomes and regulate endocytic trafficking.14,15 ASAPs, ARAPs and Gits are associated with FAs. ASAPs, ARAPs and ACAPs are found in actin-rich membrane ruffles. ASAP1 is also found in invadopodia and podosomes.4 We propose that common to all Arf GAPs is that they laterally organize membranes, which maintain surfaces of specialized functions such as FAs and podosomes/invadopodia. Some Arf GAPs function primarily as Arf effectors with the turnover rate of the specialized membrane surface being determined by the catalytic rate of the GAP. Other Arf GAPs function as Arf regulators that integrate several signals.ASAP1 is an example of an Arf GAP that may function as an Arf effector to regulate podosomes and invadopodia. ASAP1 is encoded by a gene on the short arm of chromosome 8. The gene is amplified in aggressive forms of uveal melanoma and cell migration rates correlate with ASAP1 expression levels in uveal melanoma16 and other cell types. ASAP1 function depends on cycling among four cellular locations, cytosol, FAs, lamellipodia and podosomes/invadopodia. ASAP1 is necessary for the formation of podosomes/invadopodia.17,18The structural features of ASAP1 that are required to support podosome formation have been examined.17,18 ASAP1 contains, from the N-terminus, BAR, PH, Arf GAP, Ank repeat, proline rich and SH3 domains (Fig. 2A).19 There are two major isoforms, ASAP1a and ASAP1b that differ in the proline rich domain. ASAP1a contains three SH3 binding motifs within the proline rich region including an atypical SH3 binding motif with 6 consecutive prolines. The atypical SH3 binding motif is absent in ASAP1b (Fig. 2A). ASAP1 also has a highly conserved tyrosine between the Ank repeat and proline rich domains that is a site of phosphorylation by the oncogene Src.18Open in a separate windowFigure 2ASAP1 function in podosome and invadopodia formation. (A) Domain structure of ASAP1 splice variants. ASAP1a contains three proline-rich motifs, P1, P2 and P3. P1 and P3 contain a typical (PxxP) motif. P2 contains six prolines. ASAP1b contains only P1 and P3. (B) Model of ASAP1 functioning as an Arf effector to regulate podosome and invadopodia formation. ASAP1 integrates signals from Src, PIP2 and Arf•GTP. For abbreviations of the domain structure of ASAP1 see Figure 1. Other abbreviations: PIP2, phosphoinositides 4,5-biphosphate; Arf1, ADP-ribosylation factor 1.The BAR domain is a bundle of 3 α-helices that homodimerizes to form a boomerang-shaped structure.20,21 BAR domains sense or induce membrane curvature.20 ASAP1 has been found to induce curvature dependent on its BAR domain.22 BAR domains are also protein binding sites.21 The BAR domain of ASAP1 binds to FIP3, a Rab11 and Arf6 binding proteins.23 Arf6-dependent targeting of ASAP1 is likely mediated by FIP3.23 Deletion of or introduction of point mutations into the BAR domain render ASAP1 inactive in supporting podosome formation. The relative role of membrane tubulation and protein binding in mediating the effect of the BAR domain on podosome formation has not been explored.The SH3 domain of ASAP1 binds to focal adhesion kinase24 and pyk2.25 Either deletion of or introduction of point mutations into the SH3 domain abrogates the ability of ASAP1 to support podosome formation.18 The molecular basis for the function of the SH3 domain in podosome formation is not known. The proline rich domain binds to Src19 and CrkL.26 Whether it also binds to cortactin has not been resolved. Reports also conflict regarding the importance of the proline rich domain for podosomes/invadopodia formation.17,18Three signals impinge on ASAP1 to drive podosome formation (Fig. 2B). A conserved tyrosine between the Ank and proline rich motifs is phosphorylated by Src.18,25 Mutation of the tyrosine to phenylalanine results in a protein that functions as a dominant negative blocking podosome formation. ASAP1 with the tyrosine changed to glutamate can support podosome formation, but the mutant ASAP1 is not sufficient to drive podosome formation.18 Based on these results, phosphorylation of the conserved tyrosine is necessary but not sufficient to support podosome formation. Phosphatidylinositol 4,5-bisphosphate (PIP2) binds to the PH domain, which stimulates GAP activity in vitro.27 ASAP1 with mutations in the PH domain that abrogate binding, does not support podosome formation (Jian, Bharti and Randazzo PA, unpublished observations). Point mutations in the PH domain affect both the Km and the kcat for GAP activity. The effect of mutating the PH domain on the ability of ASAP1 to support podosome formation may be consequent to changes in binding Arf1•GTP; it is not likely the result of loss of GAP activity. ASAP1 with a point mutation in the GAP domain that prevents GAP activity but not Arf1•GTP binding is able to support podosome formation whereas a point mutant of ASAP1 that cannot bind Arf1•GTP does not (Jian, Bharti and Randazzo PA, unpublished observations).18 These data support the idea that ASAP1 integrates three signals, (1) PIP2, (2) Src and (3) Arf1•GTP. In response to the signals, ASAP1 functions as a scaffold and directly alters the lipid bilayer to create a domain within the plasma membrane that becomes a podosome. In this model, ASAP1 is functioning as an Arf effector and the GAP activity may regulate the turnover of podosomes.ASAP3, another ASAP-type protein, is found in FAs.6 Reducing ASAP3 expression also reduces cell migration and invasion of Arf GAPs in cell migration mammary carcinoma cells through matrigel. Although ASAP3 does not affect the ability to form FAs, it does affect stress fiber formation and may affect focal adhesion maturation (Ha, Chen and Randazzo PA, unpublished observations).6 The molecular mechanisms underlying the effects of ASAP3 on the cytoskeleton are being examined including the possibility that, like ASAP1, ASAP3 integrates several signals and functions as an Arf effector.ARAPs are examples of Arf GAP family proteins that function as Arf regulators. In common with ASAPs, they integrate a number of signaling pathways and affect the actin cytoskeleton. Three genes encode ARAPs in humans.11 Each of the ARAPs is comprised of a SAM, five PH, Arf GAP, Rho GAP, Ank repeat and Ras association domains. Two of the five PH domains have the consensus sequence for binding to the signaling lipid phosphoinositide 3,4,5-triphosphate (PIP3); however, when examined for ARAP1, PIP3 was not involved in membrane targeting (Campa F, Balla and Randazzo PA, unpublished observations).Examination of the role of ARAP2 in FA formation has provided information about the function of the GAP activity in the cellular function of an Arf GAP. ARAP2 selectively uses Arf6 as a substrate and, different from ARAP1 and ARAP3, has an inactive Rho GAP domain. The Rho GAP domain, however, retains the ability to selectively bind to RhoA•GTP. Also different from ARAP1 and ARAP3, ARAP2 associates with FAs. Cells with reduced expression of ARAP2, consequent to siRNA treatment, have fewer FAs and stress fibers and more focal complexes than control cells. The formation of FAs and stress fibers can be restored by expressing recombinant wild type ARAP2. A mutant of ARAP2 that lacks Arf GAP activity, while retaining the ability to bind to Arf6•GTP, cannot restore FA and stress fiber formation. Similarly, expression of a mutant of ARAP2 that is not able to bind RhoA•GTP cannot reverse the effect of reducing expression of endogenous ARAP2.28 These results support the idea that ARAP2 functions as an Arf GAP that is an effector of RhoA.The model of ARAP2 functioning as a RhoA effector can explain the effects of ARAP2 on FAs (Fig. 3). Arf6•GTP is involved in the formation of Rac1•GTP.29 Rac1•GTP drives lamellipodia and focal complex formation. The conversion of focal complexes to FAs is accompanied by an increase in RhoA•GTP and a decrease in Rac1•GTP. ARAP2 could function to mediate the reciprocal changes in RhoA and Rac1. RhoA•GTP formation leads to the activation of ARAP2. As a consequence of Arf6 GAP activity, Arf6•GTP is converted to Arf6•GDP. With reduced Arf6•GTP, Rac1•GTP concentration also decreases.Open in a separate windowFigure 3Model of ARAP2 as an Arf regulator that controls focal adhesion formation. In this model, ARAP2 functions as a RhoA effector. The inactive Rho GAP domain of ARAP2 binds to RhoA•GTP, which contributes to activation of Arf6 GAP activity. ARAP2 hydrolyzes its substrate Arf6•GTP into Arf6•GDP. Subsequent to Arf6•GTP hydrolysis, Rac1•GTP concentration decreases. For abbreviations of the domain structure of ARAP2 see Figure 1.The Arf GAP activity of other ARAPs may also be critical for cellular functions of the protein. Furthermore, the Rho GAP activity is slow for ARAP1 and ARAP3. It is possible that ARAP1 and ARAP3 can function as Rho effectors with an active Rho GAP domain analogously to ASAP1 functioning as an Arf effector. Further definition of the cellular function of ARAP1 and ARAP3 will provide opportunities to test this idea.We have provided two examples of Arf GAPs that affect cell adhesion and migration. In one case, the Arf GAP appears to function as an Arf effector. In the other case, the Arf GAP functions as a regulator of Arf. The difference in function was discerned using Arf GAP mutants. If functioning as an Arf effector, an Arf GAP mutant that can bind Arf•GTP but not induce hydrolysis can reverse the effect of reduced endogenous Arf GAP, whereas a mutant that cannot bind Arf•GTP cannot replace endogenous Arf GAP. When working as an Arf regulator, a mutant that can bind Arf•GTP but not induce GTP hydrolysis cannot replace endogenous Arf GAP. Whether functioning as an effector or regulator, the rate of GAP activity determines the turnover rate of a specialized membrane surface maintained by Arf.The Arf GAPs have specific sites of action within cells. Some contribute to malignancy, such as ASAP1, ASAP3, AGAP2 and SMAP1.30 The molecular basis of cellular function of each Arf GAPs is distinct. Here, we describe one Arf GAP that functions as an Arf effector and another that functions as an Arf regulator. Each class of Arf GAP has distinct sets of protein binding partners. Furthermore, catalytic mechanism differs among the GAPs. Because of these differences, Arf GAPs may be useful therapeutic targets for cancer therapy. 相似文献
5.
《Cell Adhesion & Migration》2013,7(4):258-262
Cell migration is central to normal physiology in embryogenesis, the inflammatory response and wound healing. In addition, the acquisition of a motile and invasive phenotype is an important step in the development of tumors and metastasis. Arf GTPase-activating proteins (GAPs) are nonredundant regulators of specialized membrane surfaces implicated in cell migration. Part of Arf GAP function is mediated by regulating the ADP ribosylation factor (Arf) family GTP-binding proteins. However, Arf GAPs can also function independently of their GAP enzymatic activity, in some cases working as Arf effectors. In this commentary, we discuss examples of Arf GAPs that function either as regulators of Arfs or independently of the GTPase activity to regulate membrane structures that mediate cell adhesion and movement. 相似文献
6.
7.
Ibrahim AS 《Current opinion in microbiology》2011,14(4):406-411
Clinical hallmarks of mucormycosis infections include the unique susceptibility of patients with increased available serum iron, the propensity of the organism to invade blood vessels, and defective phagocytic function. These hallmarks underscore the crucial roles of iron metabolism, phagocyte function, and interactions with endothelial cells lining blood vessels, in the organism's virulence strategy. In an attempt to understand how Mucorales invade the host, we will review the current knowledge about interactions between Mucorales and the host while evading phagocyte-mediated killing. Additionally, since iron is an important determinant of the disease, we will focus on the role of iron on these interactions. Ultimately, a superior understanding of the pathogenesis of mucormycosis will enable development of novel therapies for this disease. 相似文献
9.
In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell surface-bound urokinase 总被引:11,自引:7,他引:11
下载免费PDF全文

《The Journal of cell biology》1988,107(6):2437-2445
The ability of the chick embryo chorioallantoic membrane (CAM) to withstand invasion by tumor cells can be intentionally compromised by altering its morphological integrity. Using a newly developed quantitative assay of invasion we showed that intact CAMs were completely resistant to invasion by tumor cells, wounded CAMs did not pose a barrier to penetration, and CAMs that were wounded and then allowed to reseal displayed partial susceptibility to invasion. The invasion of resealed CAMs required catalytically active plasminogen activator (PA) of the urokinase type (uPA); the invasive efficiency of tumor cells was reduced by 75% when tumor uPA activity or tumor uPA production was inhibited. The invasive ability of human tumor cells, which have surface uPA receptors but which do not produce the enzyme, could be augmented by saturating their receptors with exogenous uPA. The mere stimulation of either uPA or tissue plasminogen activator production, in absence of binding to cell receptors, did not result in an enhancement of invasiveness. These findings suggest that the increased invasive potential of tumor cells is correlated with cell surface-associated proteolytic activity stemming from the interaction between uPA and its surface receptor. 相似文献
10.
Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be ‘community-controlled’. 相似文献
11.
The effects of theophylline and di-butyryl cyclic adenosine 3',5'-monophosphate (db-cAMP) on the electrical coupling of heart cells were investigated in rat trabeculae. Theophylline (4 X 10(-4) M) and db-cAMP (5 X 10(-5) M) increased both the space constant and conduction velocity. The time constant of the membrane was not changed by either drug. Measurements of the time constant of the foot of the action potential and conduction velocity were used to calculate the intracellular longitudinal resistance. Both theophylline and db-cAMP were found to enhance cell-to-cell communication in the heart by decreasing the intracellular longitudinal resistance. 相似文献
12.
Ghosh S Joshi MB Ivanov D Feder-Mengus C Spagnoli GC Martin I Erne P Resink TJ 《FEBS letters》2007,581(23):4523-4528
This study addresses establishment of an "in vitro" melanoma angiogenesis model using multicellular tumor spheroids (MCTS) of differentiated (HBL) or undifferentiated (NA8) melanoma cell lines. DNA microarray assay and qRT-PCR indicated upregulation of pro-angiogenic factors IL-8, VEGF, Ephrin A1 and ANGPTL4 in NA8-MCTSs (vs. monolayers) whereas these were absent in MCTS and monolayer cultures of HBL. Upon co-culture with endothelial cell line HMEC-1 NA8-MCTS attract, whereas HBL-MCTS repulse, HMEC-1. Overexpression of T-cadherin in HMEC-1 leads to their increased invasion and network formation within NA8-MCTS. Given an appropriate angiogenic tumor microenvironment, T-cadherin upregulation on endothelial cells may potentiate intratumoral angiogenesis. 相似文献
13.
Díez-Torre A Silván U De Wever O Bruyneel E Mareel M Aréchaga J 《The International journal of developmental biology》2004,48(5-6):545-557
Testicular germ cell tumors (TGCTs) are the most frequent neoplasia among young people and their incidence has grown very quickly during recent decades in North America and Europe. Many studies have been carried out in order to elucidate the factors involved in the appearance and progression of these tumors. Little is known about the role of cancer cell-stroma crosstalk in TGCT invasive processes. Here, we review several factors which may be implicated in germ cell tumor progression, such as matrix metalloproteinases, insulin-like growth factor, transforming growth factor beta, the cadherin/catenin complex and integrins. Paradoxically, some of these molecules are also involved in the regulation of normal testicular function. Finally, we discuss prospects for future research on the role of the stroma in the progression and differentiation of male germ cell tumors. 相似文献
14.
When cardiac muscle cells from mature rats were incubated in vitro in the presence of heparin (8.7 nmole ml-1) lipoprotein lipase activity appeared in the incubation medium. The intracellular activity of the enzyme remained unchanged. Other glycosaminoglycans (heparan sulphate, dermatan sulphate, keratan sulphate and chrondroitin 6-sulphate) at the same or higher concentrations were totally ineffective in producing any enzyme redistribution between cells and medium. The release seen in the presence of heparin was blocked by the presence of cycloheximide. Cycloheximide by contrast had no effect on the release observed in the presence of dexamethasone, The action of endogenous glycosaminoglycans are unlikely therefore to have a significant role to play in the movement of lipoprotein lipase in heart tissue in vivo. 相似文献
15.
Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion 总被引:3,自引:0,他引:3
Selenium is an essential dietary component for animals including humans, and there is increasing evidence for the efficacy of certain forms of selenium as cancer-chemopreventive compounds. In addition, selenium appears to have a protective effect at various stages of carcinogenesis including both the early and later stages of cancer progression. Mechanisms for selenium-anticancer action are not fully understood; however, several have been proposed: antioxidant protection, enhanced carcinogen detoxification, enhanced immune surveillance, modulation of cell proliferation (cell cycle and apoptosis), inhibition of tumor cell invasion and inhibition of angiogenesis. Research has shown that the effectiveness of selenium compounds as chemopreventive agents in vivo correlates with their abilities to affect the regulation of the cell cycle, to stimulate apoptosis and to inhibit tumor cell migration and invasion in vitro. This article reviews the status of knowledge concerning selenium metabolism and its anticancer effects with particular reference to the modulation of cell proliferation and the inhibition of tumor cell invasion. 相似文献
16.
Inhibition of tumor cell invasion by verapamil. 总被引:3,自引:0,他引:3
K H Yohem J L Clothier S L Montague R J Geary A L Winters M J Hendrix D R Welch 《Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society》1991,4(5-6):225-233
Verapamil, a calcium channel antagonist, inhibits murine B16 melanoma and colon adenocarcinoma C26 tumor metastasis by altering platelet aggregation [Tsuruo, T., et al. (1985) Cancer Chemother. Pharmacol., 14:30-33]. However, the role of calcium homeostasis in regulating several biochemical pathways implicated in other steps of the metastatic cascade suggests that calcium channel antagonists could also inhibit metastasis by other mechanisms. In this report, non-toxic doses of verapamil reversibly decreased human A375M and C8161 melanoma cell invasion and metastasis in a dose-dependent manner. Verapamil reduced cellular invasion and metastases by up to 96% (range 78-96%). Concomitantly, verapamil disrupts microtubule and microfilament organization and inhibits unidirectional cell migration but does not affect cellular adhesion to endothelial monolayers or reconstituted basement membranes. In addition, tumor cells treated with verapamil have a decrease in mRNA of type IV collagenase, a proteinase important in tumor cell degradation of basement membranes. Collectively, these data offer additional evidence regarding the mechanisms of action of verapamil as an anti-metastatic agent. 相似文献
17.
Enzyme-enzyme interactions and their metabolic role 总被引:6,自引:0,他引:6
There are continuing reports on the existence of complexes of sequential metabolic enzymes. New techniques for their detection have been described and include affinity electrophoresis and the use of anti-idiotypic antibodies. Channeling of substrates has been reported for several systems as well as direct substrate transfer through dynamic enzyme associations. Kinetic parameters of metabolic control of organized systems have been formulated and tested in several systems. These recent results are expanding our understanding of metabolic processes and their control. 相似文献
18.
We have previously demonstrated that the exposure of mouse microvascular endothelium (MME) to tumor necrosis factor-alpha (TNF) led to the increased binding of mouse mastocytoma cells (P815) to endothelial monolayers (Bereta et al., in press). In the current study we examined the possible involvement of protein kinases in TNF signal transduction in the endothelial cells. PKA does not appear to play a role in the potentiation of binding by TNF. We found that the TNF-generated signal is inhibited by H-7 and sangivamycin, but not by staurosporine. TNF did not cause translocation of PKC to the cell membrane and its effect could not be completely mimicked by PMA nor by PMA in the presence of calcium-raising agents. Thus, we concluded that the "classical" PKC pathway is not completely responsible for TNF signalling in this system. We also found that staurosporine itself strongly enhanced adhesion of tumor cells to endothelium, utilizing a mechanism distinct from that of TNF. Although the data provide evidence for the role of kinases in the effect of TNF on binding of tumor cells to MME, this role appears to be a complex one. 相似文献
19.
Regulation of tumor cell invasion by extracellular matrix 总被引:10,自引:0,他引:10