首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous analyses of glycolytic metabolites in Artemia embryos indicate that an acute inhibition of glucose phosphorylation occurs during pHi-mediated metabolic arrest under anoxia. We describe here kinetic features of hexokinase purified from brine shrimp embryos in an attempt to explain the molecular basis for this inhibition. At saturating concentrations of cosubstrate, ADP is an uncompetitive inhibitor toward glucose and a partial noncompetitive inhibitor toward ATP (Kis = 0.86 mM, Kii = 1.0 mM, Kid = 1.9 mM). With cosubstrates at subsaturating concentrations, the uncompetitive inhibition versus glucose becomes noncompetitive, while inhibition versus ATP remains partial noncompetitive. The partial noncompetitive inhibition of ADP versus ATP is characterized by a hyperbolic intercept replot. These product inhibition patterns are consistent with a random mechanism of enzyme action that follows the preferred order of glucose binding first and glucose-6-P dissociating last. We propose that inhibition by glucose-6-P (Kis = 65 microM) occurs primarily by competing with ATP at the active site, resulting in the formation of the dead-end complex, enzyme-glucose-glucose-6-P. Versus glucose, inhibition by glucose-6-P is uncompetitive at pH 8.0 and noncompetitive at pH 6.8. Over a physiologically relevant pH range of 8.0 to 6.8 alterations in Km and Ki values do not account for the reduction in glucose phosphorylation, and no evidence suggests that Artemia hexokinase activity is modulated by reversible binding to intracellular structures. Total aluminum in the embryos is 4.01 +/- 0.36 micrograms/g dry weight, or, based upon tissue hydration, 72 microM. This concentration of aluminum dramatically reduces enzyme activity at pH values less than 7.2, even in the presence of physiological metal ion chelators (citrate, phosphate). When pH, aluminum, citrate, phosphate, substrates, and products were maintained at cellular levels measured under anoxia, we can account for a 90% inhibition of hexokinase relative to activity under control (aerobic) conditions.  相似文献   

2.
S A Adediran 《Biochimie》1991,73(9):1211-1218
The steady-state kinetics of normal human erythrocyte glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49) dimers were studied as a function of pH and temperature. Inhibition studies using glucosamine 6-phosphate, NADPH and p-hydroxymercuribenzoate (P-OHMB) were also carried out at pH 8.0. The existence of two binding sites on the enzyme with a transition from low to high affinity for NADP+ when NADP+ concentration is increased is indicated by the nonlinear Lineweaver-Burk plots and sigmoid kinetic patterns. NADPH inhibition was found to be competitive with respect to NADP+ and non-competitive with respect to glucose-6-phosphate. Logarithmic plot of Vmax against pH and inactivation by P-OHMB indicate the participation in the reaction mechanism of imidazolium group of histidine and sulhydryl groups. The initial velocity and product inhibition data gave results which are consistent with the dimeric enzyme following an ordered sequential mechanism. A possible random mechanism is ruled out by the inhibition results of glucosamine 6-phosphate.  相似文献   

3.
The kinetic mechanisms of the NAD- and NADP-linked reactions catalyzed by glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides were examined using product inhibition, dead-end inhibition and alternate substrate experiments. The results are consistent with a steady-state random mechanism for the NAD-linked and an ordered, sequential mechanism with NADP+ binding first for the NADP-linked reaction. Thus, the enzyme can bind NADP+, NAD+, and glucose 6-phosphate, but the enzyme-glucose 6-phosphate complex can react only with NAD+, not with NADP+. This affects the rate equation for the NADP-linked reaction by introducing a term for a dead-end enzyme-glucose 6-phosphate complex. The kinetic mechanisms represent revisions of those proposed previously (C. Olive, M.E. Geroch, and H.R. Levy, 1971, J. Biol. Chem. 246, 2047-2057) and provide a kinetic basis for the regulation of coenzyme utilization of the enzyme by glucose 6-phosphate concentration (H.R. Levy, and G.H. Daouk, 1979, J. Biol. Chem. 254, 4843-4847) and NADPH/NADP+ concentration ratios (H.R. Levy, G.H. Daouk, and M.A. Katopes, 1979, Arch, Biochem. Biophys. 198, 406-413). The kinetic mechanisms were found to be the same at pH 6.2 and pH 7.8. The kinetics of ATP inhibition of the NAD- and NADP-linked reactions were examined at pH 6.2 and pH 7.8. The results are interpreted in terms of ATP addition to binary enzyme-coenzyme and enzyme-glucose 6-phosphate complexes.  相似文献   

4.
The steady-state kinetics of human erythrocyte glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49) dimers were studied by initial rate measurement. These experiments gave intersecting double-reciprocal plots suggesting a ternary complex mechanism with a Km for NADP and glucose 6-phosphate of 11 microM and 43 microM, respectively. These studies were combined with rate measurements in the presence of one product (NADPH), dead-end inhibitors, as well as alternative substrates. The inhibition by NADPH was found to be competitive with respect to both substrates. Alternate substrates experiments gave linear double-reciprocal plots over a wide range of substrate concentrations. The results suggest that the dimeric enzyme follows either a random or a Theorell-Chance mechanism.  相似文献   

5.
Michaelis-Menten kinetics are observed in studies of highly purified bovine adrenal glucose-6-phosphate dehydrogenase at pH8.0 in 0.1 M bicine. The Km for NADP+ is 3.8 muM and for glucose-6-phosphate, 61 muM. At pH 6.9 Km for NADP+ increases to 6.5 muM. The enzyme is inhibited by NADPH both at pH 6.8 and at 8.0 with a Kip of 2.36 muM at pH 8.0. Inhibition is competitive with respect to both substrates implying that addition of substrates is random ordered. The data are also interpreted in terms of "reducing charge", the mole fraction of coenzyme in the reduced form. This appears to be the major mechanism for regulation of the pentose shunt. D-glucose, oxidized by the enzyme at a very slow rate, is also a competitive inhibitor for the natural substrate with a Ki of 0.29 M. Phosphate is a competitive inhibitor for glucose-6-phosphate oxidation but both phosphate and sulfate accelerate glucose oxidation suggesting a common binding site for the two anions and the phosphate of the natural substrate. While binding of ACTH to our enzyme preparations has been observed, we have not been able, in spite of repeated attempts, to demonstrate augmentation of the activity of the enzyme by the addition of ACTH.  相似文献   

6.
The kinetic mechanism of the hypothalamic NADPH-linked progesterone 5 alpha-reductase from female rats was determined to be equilibrium ordered sequential by initial velocity, product inhibition and dead-end inhibition studies. Analysis of the initial velocity data resulted in intersecting double reciprocal plots indicating a sequential mechanism (apparent Km (progesterone) = 95.4 +/- 4.5 nM; apparent Kia(NADPH) = 9.9 +/- 0.7 microM). The plot of 1/v vs 1/progesterone intersected on the ordinate which is consistent with an equilibrium ordered mechanism. Ordered addition of the substrates was also supported by product inhibition studies with NADP versus NADPH and NADP versus progesterone. NADP is a competitive inhibitor versus NADPH (apparent Kis = 4.3 +/- 1.3 microM) and a noncompetitive inhibitor versus progesterone (apparent Kis = 31.9 +/- 1.4 microM and apparent Kii = 145.4 +/- 15.5 microM). These inhibition patterns show that NADPH binds prior to progesterone. Taken together, these analyses indicate that the cofactor, NADPH, binds to the enzyme in rapid equilibrium and preferentially precedes the binding of progesterone.  相似文献   

7.
Ulusu NN  Tandogan B  Tezcan FE 《Biochimie》2005,87(2):187-190
Glucose-6-phosphate dehydrogenase is the key regulatory enzyme of the pentose phosphate pathway and one of the products of this enzyme; NADPH has a critical role in the defence system against the free radicals. In this study, glucose-6-phosphate dehydrogenase from lamb kidney cortex kinetic properties is examined. The purification procedure is composed of two steps after ultracentrifugation for rapid and easy purification: 2', 5'-ADP Sepharose 4B affinity and DEAE Sepharose Fast Flow anion exchange chromatography. Previously, we used this procedure for the purification of glucose-6-phosphate dehydrogenase from bovine lens. The double reciprocal plots and product inhibition studies showed that the enzyme obeys 'Ordered Bi Bi' mechanism: K(m NADP+)K(m G-6-P) and K(i G-6-P) (dissociation constant of the enzyme--G-6-P complex) were found to be 0.018 +/- 0.002, 0.039 +/- 0.006 and 0.029 +/- 0.005 mM, respectively, by using nonlinear regression analysis. The enzyme was stable at 4 degrees C for a week.  相似文献   

8.
Efforts to identify novel compounds capable of blocking the steroid 5 alpha-reductase (SR) catalyzed conversion of testosterone (T) to 5 alpha-dihydrotestosterone have resulted in the development of 17 beta-substituted-3-androstene-3-carboxylic acids as potent inhibitors of the rat prostatic enzyme. The dead-end inhibition patterns of one of these steroidal acrylates, 17 beta-N-(2-methyl-2-propyl)-carbamoyl-androst-3,5-diene-3-carboxylic acid were best evaluated with a linear uncompetitive kinetic model vs both T (Kii = 11 +/- 1 nM) and NADPH (Kii = 22 +/- 2 nM). To interpret these observations, the kinetic mechanism of the rat prostatic SR was shown to involve the binding of NADPH prior to that of T through a series of dead-end and product inhibition experiments. Within the context of this preferentially ordered kinetic mechanism, it is proposed that the uncompetitive inhibition patterns result from the association of the steroidal acrylate to an enzyme complex containing NADP+ in formation of a dead-end ternary complex of enzyme, NADP+, and inhibitor.  相似文献   

9.
An analysis of the kinetic mechanism of the microsomal NADPH-linked progesterone 5 alpha-reductase obtained from female rat anterior pituitaries was performed. Initial velocity, product inhibition and dead-end inhibition studies indicate that the kinetic mechanism for the progesterone 5 alpha-reductase is equilibrium ordered sequential. Analysis of the initial velocity data resulted in intersecting double reciprocal plots suggesting a sequential mechanism [apparent Km(progesterone) = 88.2 +/- 8.2 nM; apparent Kia(NADPH) = 7.7 +/- 1.1 microM]. Furthermore, the plot of 1/v vs 1/progesterone intersected on the ordinate which is indicative of an equilibrium ordered mechanism. Additional support for ordered substrate binding was provided by the product inhibition studies with NADPH versus NADP and progesterone versus NADP. NADP is a competitive inhibitor versus NADPH (apparent Kis = 7.8 +/- 1.0 microM) and a noncompetitive inhibitor versus progesterone (apparent Kis = 9.85 +/- 2.1 microM and apparent Kii = 63.2 +/- 12.5 microM). These inhibition patterns suggest that NADPH binds prior to progesterone. In sum, these kinetic studies indicate that NADPH binds to the microsomal enzyme in rapid equilibrium and preferentially precedes the binding of progesterone.  相似文献   

10.
The tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate lyase (pyruvate-phosphorylating), EC 4.2.1.15) was purified to homogeneity from extracts of Escherichia coli K12. A spectrophotometric assay of the enzyme activity, based on the absorption difference of substrates and products at 232 nm, was developed. The enzyme has a molecular weight of 66,000 as judged by gel filtration on Sephadex G-200, and a subunit molecular weight of 39,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. This suggests either a rapid monomer-dimer equilibrium, or a very asymmetric shape for the native enzyme. The enzyme shows a narrow pH optimum around pH 7.0. The enzyme is stable for several months when stored at -20 degrees in phosphate buffer containing phosphoenol-pyruvate. Intersecting lines in double reciprocal plots of initial velocity data at substrate concentrations in the micromolar range suggest a sequential mechanism with-catalyzed reaction. Product inhibition studies specify an ordered sequential BiBi mechanism with a dead-end E-P complex. The feedback inhibitor tyrosine at concentrations above 10 muM exhibits noncompetitive inhibition with respect to erythrose-4-P, and competitive inhibition with respect to the other substrate, P-enolpyruvate. In addition, tyrosine at concentrations of at least 10 muM causes an alteration of one or more than one kinetic parameter of the enzyme.  相似文献   

11.
The kinetic mechanism of NADPH-dependent aldehyde reductase II and aldose reductase, purified from human placenta, has been studied using L-glucuronate and DL-glyceraldehyde as their respective substrates. For aldehyde reductase II, the initial velocity and product inhibition studies (using NADP and gulonate) indicate that the enzyme reaction sequence is ordered with NADPH binding to the free enzyme and NADP being the last product to be released. Inhibition patterns using menadione (an analog of the aldehydic substrate) and ATP-ribose (an analog of NADPH) are also consistent with a compulsory ordered reaction sequence. Isotope effects of deuterium-substituted NADPH (NADPD) also corroborate the above reaction scheme and indicate that hydride transfer is not the sole rate-limiting step in the reaction sequence. For aldose reductase, initial velocity patterns, product, and dead-end inhibition studies indicate a random binding pattern of the substrates and an ordered release of product; the coenzyme is released last. A steady-state random mechanism is also consistent with deuterium isotope effects of NADPD on the reaction sequence catalyzed by this enzyme. However, the hydride transfer step seems to be more rate determining for aldose reductase than for aldehyde reductase II.  相似文献   

12.
The chemical and kinetic mechanisms of purified aspartate-beta-semialdehyde dehydrogenase from Escherichia coli have been determined. The kinetic mechanism of the enzyme, determined from initial velocity, product and dead end inhibition studies, is a random preferred order sequential mechanism. For the reaction examined in the phosphorylating direction L-aspartate-beta-semialdehyde binds preferentially to the E-NADP-Pi complex, and there is random release of the products L-beta-aspartyl phosphate and NADPH. Substrate inhibition is displayed by both Pi and NADP. Inhibition patterns versus the other substrates suggest that Pi inhibits by binding to the phosphate subsite in the NADP binding site, and the substrate inhibition by NADP results from the formation of a dead end E-beta-aspartyl phosphate-NADP complex. The chemical mechanism of the enzyme has been examined by pH profile and chemical modification studies. The proposed mechanism involves the attack of an active site cysteine sulfhydryl on the carbonyl carbon of aspartate-beta-semialdehyde, with general acid assistance by an enzyme lysine amino group. The resulting thiohemiacetal is oxidized by NADP to a thioester, with subsequent attack by the dianion of enzyme bound phosphate. The collapse of the resulting tetrahedral intermediate leads to the acyl-phosphate product and liberation of the active site cysteine.  相似文献   

13.
Isotope exchange kinetics at chemical equilibrium have been used to investigate the kinetic mechanism of homoserine dehydrogenase (EC 1.1.1.3) of the (Thr-sensitive) aspartokinase/homoserine dehydrogenase-I multifunctional enzyme from E. coli. For the reaction (L-ASA + NADPH + H+ = L-Hse + NADP+), at pH 9.0, 37 degrees C, Keq = 100 (+/- 20). Under these conditions, the rate for exchange of [14C]-L-homoserine (Hse) in equilibrium L-aspartate-beta-semialdehyde (ASA) is nearly twice that for the [3H]-NADP+ in equilibrium NADPH exchange. This indicates that covalent interconversion between reactants and products bound in the active site cannot be rate-limiting. Upon variation of the concentrations of all four substrates in constant ratio at equilibrium (to minimize dead-end complex formation), the Hse in equilibrium ASA exchange increased smoothly toward a maximum. In contrast, the NADP+ in equilibrium NADPH exchange rate increased to a maximum value at partial saturation, then decreased to approximately half the maximum rate. These data are consistent with a preferred-order random kinetic mechanism in which the dominant pathway involves association of NADPH prior to L-ASA and dissociation of L-Hse prior to NADP+.  相似文献   

14.
The kinetic mechanisms of Escherichia coli phosphofructokinase-2 (Pfk-2) and of the mutant enzyme Pfk-2 were investigated. Initial velocity studies showed that both enzymes have a sequential kinetic mechanism, indicating that both substrates must bind to the enzyme before any products are released. For Pfk-2, the product inhibition kinetics was as follows: fructose-1,6-P2 was a competitive inhibitor versus fructose-6-P at two ATP concentrations (0.1 and 0.4 mM), and noncompetitive versus ATP. The other product inhibition patterns, ADP versus either ATP or fructose-6-P were noncompetitive. Dead-end inhibition studies with an ATP analogue, adenylyl imidodiphosphate, showed uncompetitive inhibition when fructose-6-P was the varied substrate. For Pfk-2, the product inhibition studies revealed that ADP was a competitive inhibitor versus ATP at two fructose-6-P concentrations (0.05 and 0.5 mM), and noncompetitive versus fructose-6-P. The other product, fructose-1, 6-P2, showed noncompetitive inhibition versus both substrates, ATP and fructose-6-P. Sorbitol-6-P, a dead-end inhibitor, exhibited competitive inhibition versus fructose-6-P and uncompetitive versus ATP. These results are in accordance with an Ordered Bi Bi reaction mechanism for both enzymes. In the case of Pfk-2, fructose-6-P would be the first substrate to bind to the enzyme, and fructose-1,6-P2 the last product to be released. For Pfk-2, ATP would be the first substrate to bind to the enzyme, and APD the last product to be released.  相似文献   

15.
Hexokinase I (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1), a key regulatory glycolytic enzyme in certain tissues, is known to be markedly inhibited under physiological conditions. The action of the primary inhibitory effector, glucose-6-P, is reversed by inorganic orthophosphate (Pi). A molecular model for inhibition and deinhibition of hexokinase was recently proposed [Ellison, W. R., Lueck, J. D., and Fromm, H. J. (1975) J. Biol. Chem.250, 1864–1871]. One of the central assumptions of this model is that glucose-6-P is a normal product inhibitor of hexokinase. It has long been suggested that glucose-6-P is an allosteric inhibitor of hexokinase, whereas other sugar-phosphate products such as mannose-6-P are normal product inhibitors. In this report we investigated the kinetic mechanism of hexokinase action with mannose as substrate and mannose-6-P as an inhibitor. The data obtained show that there are no qualitative differences between glucose and mannose as substrates and glucose-6-P and mannose-6-P as inhibitors. Binding experiments indicate that glucose-6-P and mannose-6-P are competitive binding ligands with hexokinase I. Furthermore, the activation pattern observed with Pi and glucose-6-P inhibited hexokinase is also found with the mannose-6-P inhibited phosphotransferase. These findings suggest that the mechanism of inhibition of glucose-6-P and mannose-6-P represents a difference in degree rather than a difference in kind. An explanation of the results in terms of a stereochemical model is presented.  相似文献   

16.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

17.
Association and dissociation rate constants obtained by stopped-flow spectroscopy have permitted definition of a kinetic scheme for recombinant human dihydrofolate reductase that correctly predicts full time course kinetics of the enzymatic reaction over a wide range of substrate and product concentrations. The scheme is complex compared with that for the bacterial enzyme and involves branched pathways. It successfully accounts for observed rapid hysteresis preceding steady state and for the nonhyperbolic dependence of steady-state rate on substrate and product concentrations. The major branch point in the catalytic cycle occurs at E.NADP.H4folate because either NADP or H4folate can dissociate from the ternary product complex (koff = 84 s-1 and 46 s-1, respectively). The rate of conversion of enzyme-bound substrates to products is very fast (k = 1360 s-1) and nearly unidirectional (Kequ = 37) so that other steps limit the catalytic rate. At saturating substrate concentrations these steps include release of NADP and H4folate from E.NADP.H4folate and release of products from the two abortive complexes E.NADPH.H4folate (koff = 225 s-1) and E.NADP.H4folate (koff = 4.6 s-1). Since NADP dissociates slowly from E.NADP.H2folate nearly 90% of the enzyme accumulates as this complex at steady state. Nonetheless, the catalytic rate is maintained at 12 s-1 by rapid flux of a small portion of the enzyme through an alternate branch. At physiological concentrations of substrates and products the steady-state rate is limited primarily by the rate of H2folate binding to E.NADPH so that the enzyme is extremely efficient.  相似文献   

18.
The kinetic mechanism of two major monomeric 17 beta-hydroxysteroid dehydrogenases from mouse liver cytosol was studied at pH 7 in both directions with NADP(H) and three steroid substrates: testosterone, 5 beta-androstane-3 alpha, 17 17 beta-diol, and estradiol-17 beta. In each case the reaction mechanism of the two enzymes was sequential, and inhibition patterns by-products and dead-end inhibitors were consisted with an ordered bi bi mechanism with the coenzyme binding to the free enzyme, although there was difference in affinity and maximum velocity for the steroidal substrates between the two enzymes. Binding studies of the coenzyme and substrate indicate the binding of coenzyme to the free enzyme, in which 1 mol of NADPH binds to 1 mol of each monomeric enzyme. The 4-pro-R-hydrogen atom of NADPH was transferred to the alpha-face of the steroid molecule by the two enzymes.  相似文献   

19.
The steady state kinetics of pig liver glucose-6-phosphate dehydrogenase is consistent with an ordered, sequential mechanism in which NADP is bound first and NADPH released last. Kia is 9.0 muM, Ka is 4.8 muM, and Kb is 36 muM. Glucosamine 6-phosphate, a substrate analogue and competitive inhibitor, is used to help rule out a possible random mechanism. ADP is seen to form a complex with the free form of the enzyme whereas ATP forms a complex with both the free and E-NADP forms of the enzyme. The KI for the E-ADP complex is 1.9 mM, while the Ki values for the E-ATP and E-NADP-ATP complexes are 7.2 and 4.5 mM, respectively.  相似文献   

20.
The kinetic mechanisms of the reactions catalyzed by the two catalytic domains of aspartokinase-homoserine dehydrogenase I from Escherichia coli have been determined. Initial velocity, product inhibition, and dead-end inhibition studies of homoserine dehydrogenase are consistent with an ordered addition of NADPH and aspartate beta-semialdehyde followed by an ordered release of homoserine and NADP+. Aspartokinase I catalyzes the phosphorylation of a number of L-aspartic acid analogues and, moreover, can utilize MgdATP as a phosphoryl donor. Because of this broad substrate specificity, alternative substrate diagnostics was used to probe the kinetic mechanism of this enzyme. The kinetic patterns showed two sets of intersecting lines that are indicative of a random mechanism. Incorporation of these results with the data obtained from initial velocity, product inhibition, and dead-end inhibition studies at pH 8.0 are consistent with a random addition of L-aspartic acid and MgATP and an ordered release of MgADP and beta-aspartyl phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号