首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
当森林生态系统转变成农田生态系统时,会把C4植物有机质导入到曾在C3植被下发育的土训中去,使土壤中含有来源不同的土壤有机质,引起碳同位素组成变化。因此,可以利用碳同位素来区分土壤有机质来源,实验结果表明,耕作几十年后原森林土壤有机质的含量仍占有主要地位,来源于原始C3植被的有机碳的比例为66.7%,但容易矿化的、对植物营养有效的有机质含量较低,这与当地的耕作方式有关,需要加强对植物残留物返回土壤工作的管理。  相似文献   

2.
Soil organic carbon (SOC), the largest terrestrial carbon pool, plays a significant role in soil‐related ecosystem services such as climate regulation, soil fertility and agricultural production. However, its fate under land use change is difficult to predict. A major issue is that SOC comprised of numerous organic compounds with potentially distinct and poorly understood turnover properties. Here we use spatiotemporal measurements of the particulate (POC), mineral‐associated (MOC) and charred SOC (COC) fractions from 176 trials involving changes in land use to assess their underlying controls. We find that the initial pool sizes of each of the three fractions consistently and dominantly control their temporal dynamics after changes in land use (i.e. the baseline effects). The effects of climate, soil physicochemical properties and plant residues, however, are fraction‐ and time‐dependent. Climate and soil properties show similar importance for controlling the dynamics of MOC and COC, while plant residue inputs (in term of their quantity and quality) are much less important. For POC, plant residues and management practices (e.g. the frequency of pasture in crop‐pasture rotation systems) are substantially more important, overriding the influence of climate. These results demonstrate the pivotal role of measuring SOC composition and considering fraction‐specific stabilization and destabilization processes for effective SOC management and reliable SOC predictions.  相似文献   

3.
植物残体是引起土壤、微生物和胞外酶C∶N∶P改变的关键因素,但是其作用机理尚不明确。本研究以青藏高原东缘高寒草甸为对象,通过测定土壤、微生物生物量和胞外酶活性等指标,探究移除地上植物或根系及植物残体添加对土壤、微生物和胞外酶C∶N∶P的影响。结果表明: 与无人为扰动草甸相比,移除地上植物显著降低了土壤C∶N(变幅为-23.7%,下同)、C∶P(-14.7%)、微生物生物生物量C∶P、N∶P,显著提高了微生物生物量C∶N、胞外酶C∶N∶P。与移除地上植物相比,移除地上植物和根系显著降低了土壤C∶N(-11.6%)、C∶P(-24.0%)、N∶P(-23.3%)和微生物生物量C∶N,显著提高了微生物生物量N∶P和胞外酶N∶P;移除地上植物后添加植物残体显著提高了微生物生物量C∶N、C∶P和胞外酶C∶N,显著降低了胞外酶N∶P。与移除地上植物和根系相比,移除地上植物和根系后添加植物残体显著降低了土壤C∶N(-16.4%)、微生物生物量C∶P、N∶P和胞外酶N∶P,显著提高了胞外酶C∶N。综上可知,去除植物显著影响土壤、微生物和胞外酶的C∶N∶P,微生物生物量和胞外酶C∶N∶P对植物残体的响应更为敏感。有无根系是添加植物残体时土壤、微生物和胞外酶的生态化学计量稳定性强弱的关键所在。添加植物残体的措施适用于植物根系尚且完好的草甸,有利于高寒草甸土壤碳固存,对没有根系的草甸土壤可能不适用,会增加土壤CO2排放。  相似文献   

4.
Vascular plants have lignified tissues that transport water, minerals, and photosynthetic products throughout the plant. They are the dominant primary producers in terrestrial ecosystems and capture significant quantities of atmospheric carbon dioxide (CO2) through photosynthesis. Some of the fixed CO2 is respired by the plant directly, with additional CO2 lost from rhizodeposits metabolized by root-associated soil microorganisms. Microbially-mediated mineralization of organic nitrogen (N) from plant byproducts (rhizodeposits, dead plant residues) followed by nitrification generates another greenhouse gas, nitrous oxide (N2O). In anaerobic soils, reduction of nitrate by microbial denitrifiers also produces N2O. The plant-microbial interactions that result in CO2 and N2O emissions from soil could be affected by genetic modification. Down-regulation of genes controlling lignin biosynthesis to achieve lower lignin concentration or a lower guaiacyl:syringyl (G:S) ratio in above-ground biomass is anticipated to produce forage crops with greater digestibility, improve short rotation woody crops for the wood-pulping industry and create second generation biofuel crops with low ligno-cellulosic content, but unharvested residues from such crops are expected to decompose quickly, potentially increasing CO2 and N2O emissions from soil. The objective of this review are the following: 1) to describe how plants influence CO2 and N2O emissions from soil during their life cycle; 2) to explain how plant residue chemistry affects its mineralization, contributing to CO2 and N2O emissions from soil; and 3) to show how modification of plant lignin biosynthesis could influence CO2 and N2O emissions from soil, based on experimental data from genetically modified cell wall mutants of Arabidopsis thaliana. Conceptual models of plants with modified lignin biosynthesis show how changes in phenology, morphology and biomass production alter the allocation of photosynthetic products and carbon (C) losses through rhizodeposition and respiration during their life cycle, and the chemical composition of plant residues. Feedbacks on the soil environment (mineral N concentration, soil moisture, microbial communities, aggregation) affecting CO2 and N2O emissions are described. Down-regulation of the Cinnamoyl CoA Reductase 1 (CCR1) gene is an excellent target for highly digestable forages and biofuel crops, but A. thaliana with this mutation has lower plant biomass and fertility, prolonged vegetative growth and plant residues that are more susceptible to biodegradation, leading to greater CO2 and N2O emissions from soil in the short term. The challenge in future crop breeding efforts will be to select tissue-specific genes for lignin biosynthesis that meet commercial demands without compromising soil CO2 and N2O emission goals.  相似文献   

5.
泥炭植物残体是泥炭和泥炭矿体的主要组分。泥炭的植物组成与泥炭的分解度和营养状况密切相关。在进行泥炭分类时,植物残体组成是其重要依据。各泥炭矿体特征间“质”的差异也反映在泥炭植物残体组成成分的不同上。因此,在进行泥炭矿体分类时,可将矿层的植物残体组分作其依据。本文拟将我国的泥炭矿体分为富营养、中营养、贫营养和混合四个泥炭矿体型;并续分出十一个泥炭矿体组。  相似文献   

6.
植物残茬对土壤酸度的影响及其作用机理   总被引:10,自引:0,他引:10  
土壤强酸性是作物生长的最主要限制因子之一,某些植物残茬可以有效地提高土壤pH,降低活性铝含量,提高作物产量。植物残茬改良土壤酸度的效能因种而异,最高土壤pH升幅可达4.53个单位,多种豆科植物材料可使土壤pH提高2个单位以上,当pH>5时,土壤溶液活性铝降至极低水平,从而消除铝害。植物残茬改良土壤酸度的效能受植物残茬自身特性与土壤特性的影响,而且pH的上升通常在几个月后消失,但这种效能对当季作物有效。植物体内有机酸根的去羧化作用被认为是pH上升的主要机理之一,去羧化机理存在的主要证据是,随着土壤pH升高,植物材料内的可溶性有机成分下降,CO2排放与pH上升高度相关,以及杀菌条件下土壤pH上升速度显著减慢。超量碱机理是植物残茬导致pH上升的又一可能的重要机理,亦即有机盐的作用,有机盐分解转化为碳酸盐,其作用与石灰完全相似,有机盐水解也可导致土壤溶液的碱性反应。铵化作用与硝化作用是高氮植物材料影响土壤酸度的重要机理,有机氮的铵化直接消耗质子,铵的硝化则产生质子,pH的变化与这些氮过程高度相关。含硫植物材料及有机物质分解过程产生的氧化还原条件的变化,也可对土壤pH产生影响,但它们的作用较小。综合来看,去羧化作用机理基于间接证据,没有得到严格验证,超量碱机理可能是土壤pH上升的主要原因,超量碱只能转移,不能制造,含超量碱高的外源性有机材料施入耕地,将是改良土壤酸度,提高作物产量的一种有效途径。  相似文献   

7.
Microbial communities are of major importance in the decomposition of soil organic matter. However, the identities and dynamics of the populations involved are still poorly documented. We investigated, in an 11-month field experiment, how the initial biochemical quality of crop residues could lead to specific decomposition patterns, linking biochemical changes undergone by the crop residues to the respiration, biomass, and genetic structure of the soil microbial communities. Wheat, alfalfa, and rape residues were incorporated into the 0–15 cm layer of the soil of field plots by tilling. Biochemical changes in the residues occurring during degradation were assessed by near-infrared spectroscopy. Qualitative modifications in the genetic structure of the bacterial communities were determined by bacterial-automated ribosomal intergenic spacer analysis. Bacterial diversity in the three crop residues at early and late stages of decomposition process was further analyzed from a molecular inventory of the 16S rDNA. The decomposition of plant residues in croplands was shown to involve specific biochemical characteristics and microbial community dynamics which were clearly related to the quality of the organic inputs. Decay stage and seasonal shifts occurred by replacement of copiotrophic bacterial groups such as proteobacteria successful on younger residues with those successful on more extensively decayed material such as Actinobacteria. However, relative abundance of proteobacteria depended greatly on the composition of the residues, with a gradient observed from alfalfa to wheat, suggesting that this bacterial group may represent a good indicator of crop residues degradability and modifications during the decomposition process.  相似文献   

8.
9.
An incubation method was used to investigate the nitrogen release characteristics from the residue of ten plant species which commonly grow in the northern part of the Loess Plateau. The effect of the residue on soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) was also determined. There were significant differences in the total N content and the C/N ratios among the different types of plant residue. The total N content of the residues ranged from 6.61 to 32.78 g kg?1. The C/N ratio of the residue ranged from 14 to 65. There was an immediate increase in soil N after alfalfa, erect milkvetch, and korshinsk peashrub residue was added to the soil. In contrast, soil N decreased after elm, sea buckthorn, and wild peach residue was added to the soil. The soil N content remained relatively low for 14–34 days and then increased. This indicated that N immobilization occurred during the early portion of the incubation period when elm, sea buckthorn and wild peach residue was added to the soil. Soil N levels were low during the entire incubation period when simon poplar, locust, Stipa bungeana, and old world bluestem residue were added to the soil. The addition of plant residue significantly increased SMBC and SMBN in all treatments. The SMBC and SMBN values were greatest in treatments containing plant residue with high total N content and low C/N ratios. The C/N ratios of korshinsk peashrub, sea buckthorn, and wild peach residues were similar, but the amount of N released from these residues and the effects of the residue on SMBC and SMBN in soil were significantly different. This indicates that not only the C/N ratio but also the chemical composition of the plant residue affected decomposition. It is important to consider C and N release characteristics from plant residue in order to adjust the C and N balance of soil when revegetating degraded ecosystems.  相似文献   

10.
Soils harbor large, diverse microbial communities critical for local and global ecosystem functioning that are controlled by multiple and poorly understood processes. In particular, while there is observational evidence of relationships between both biotic and abiotic conditions and microbial composition and diversity, there have been few experimental tests to determine the relative importance of these two sets of factors at local scales. Here, we report the results of a fully factorial experiment manipulating soil conditions and plant cover on old‐field mesocosms across a latitudinal gradient. The largest contributor to beta diversity was site‐to‐site variation, but, having corrected for that, we observed significant effects of both plant and soil treatments on microbial composition. Separate phyla were associated with each treatment type, and no interactions between soil and plant treatment were observed. Individual soil characteristics and biotic parameters were also associated with overall beta‐diversity patterns and phyla abundance. In contrast, soil microbial diversity was only associated with site and not experimental treatment. Overall, plant community treatment explained more variation than soil treatment, a result not previously appreciated because it is difficult to dissociate plant community composition and soil conditions in observational studies across gradients. This work highlights the need for more nuanced, multifactorial experiments in microbial ecology and in particular indicates a greater focus on relationships between plant composition and microbial composition during community assembly.  相似文献   

11.
There is growing interest in understanding the linkages between above- and belowground communities, and very little is known about these linkages in tropical systems. Using an experimental site at La Selva Biological Station, Costa Rica, we examined whether plant diversity, plant community composition, and season influenced microbial communities. We also determined whether soil characteristics were related to differences in microbial communities. Phospholipid fatty acid (PLFA) composition revealed that microbial community composition differed across a plant diversity gradient (plots contained 1, 3, 5, or over 25 species). Plant species identity also was a factor influencing microbial community composition; PLFA composition significantly varied among monocultures, and among three-species combinations that differed in plant species composition. Differences among treatments within each of these comparisons were apparent in all four sampling dates of the study. There was no consistent shift in microbial community composition between wet and dry seasons, although we did see significant changes over time. Of all measured soil characteristics, soil C/N was most often associated with changes in microbial community composition across treatment groups. Our findings provide evidence for human alteration of soil microbial communities via the alteration of plant community composition and diversity and that such changes are mediated in part by changes in soil carbon quality.  相似文献   

12.
The effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-automated ribosomal intergenic spacer analysis of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed the difference of composition of the bacterial community according to the location. Bacteria belonging to the γ-subgroup of proteobacteria were stimulated when residues were incorporated whereas the α-subgroup was stimulated when residues were left at the soil surface. Moreover, Actinobacteria were more represented when residues were left at the soil surface. According to the ecological attributes of the populations identified, our results suggested that climatic fluctuations at the soil surface select populations harboring enhanced catabolic and/or survival capacities whereas residues characteristics likely constitute the main determinant of the composition of the bacterial community colonizing incorporated residues.  相似文献   

13.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

14.
The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot‐level variability in belowground microbial communities.  相似文献   

15.
Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long‐term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM‐dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition—e.g. most AM‐dominated forests—enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM‐dominance in three temperate forests. By focusing on sites where AM‐ and ECM‐plants co‐occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM‐dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM.  相似文献   

16.
生防菌对土壤微生态影响的风险评估   总被引:2,自引:0,他引:2  
土壤微生物在地理生物化学循环过程中起着极其重要的作用。在农业生态系统中,土壤微生物通过降解植物残体为植物提供营养,同时维持植物生产所需的土壤性质。生防菌的引入可能会破坏土壤原有微生物的群落结构和功能,从而对整个生态系统造成有害的影响,因此不论生防菌有无经过基因修饰,在商业化应用前必须对其在农业生态环境中的行为和对土壤生态系统的潜在影响进行风险评估。  相似文献   

17.
The soil microbial community is essential for maintaining ecosystem functioning and is intimately linked with the plant community. Yet, little is known on how soil microbial communities in the root zone vary at continental scales within plant species. Here we assess the effects of soil chemistry, large-scale environmental conditions (i.e. temperature, precipitation and nitrogen deposition) and forest land-use history on the soil microbial communities (measured by phospholipid fatty acids) in the root zone of four plant species (Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica) in forests along a 1700 km latitudinal gradient in Europe.Soil microbial communities differed significantly among plant species, and soil chemistry was the main determinant of the microbial community composition within each plant species. Influential soil chemical variables for microbial communities were plant species-specific; soil acidity, however, was often an important factor. Large-scale environmental conditions, together with soil chemistry, only explained the microbial community composition in M. effusum and P. nemoralis. Forest land-use history did not affect the soil microbial community composition.Our results underpin the dominant role of soil chemistry in shaping microbial community composition variation within plant species at the continental scale, and provide insights into the composition and functionality of soil microbial communities in forest ecosystems.  相似文献   

18.
The use of cruciferous plant residues to reduce the amount of sclerotia of Sclerotium cepivorum and chlamydospores of Fusarium oxysporum f. sp. lycopersici in soil was investigated. Air‐dried and crushed mustard (Brassica juncea) added to the soil effectively reduced the viability of fungal propagules. Consequently, the reduction of white rot of onion, caused by S. cepivorum and wild of tomato caused by F. oxysporum was observed. The addition of rapeseed (Brassica. napus cv. Bolko and B. napus cv. Gorczanski) residues to soil also resulted in a significant decrease of number of S. cepivorum sclerotia but the effect on F. oxysporum chlamydospores was variable. Introduction of the plant material increased the total number of bacteria, spore‐forming bacteria, fluorescent pseudomonads, actinomycetes, and fungi in soil. One year after the soil amendment, the amount of sporeforming bacteria in treatments with cruciferous residues was higher as compared to the control soil without plant residues. The possible contribution of the decomposition of plant residues and soil micro‐organisms to the reduction of the pathogens population is discussed.  相似文献   

19.
Soil respiration is responsible for recycling considerable quantities of carbon from terrestrial ecosystems to the atmosphere. There is a growing body of evidence that suggests that the richness of plants in a community can have significant impacts on ecosystem functioning, but the specific influences of plant species richness (SR), plant functional-type richness and plant community composition on soil respiration rates are unknown. Here we use 10-year-old model plant communities, comprising mature plants transplanted into natural non-sterile soil, to determine how the diversity and composition of plant communities influence soil respiration rates. Our analysis revealed that soil respiration was driven by plant community composition and that there was no significant effect of biodiversity at the three levels tested (SR, functional group and species per functional group). Above-ground plant biomass and root density were included in the analysis as covariates and found to have no effect on soil respiration. This finding is important, because it suggests that loss of particular species will have the greatest impact on soil respiration, rather than changes in biodiversity per se.  相似文献   

20.
Goodfriend  W. L.  Olsen  M. W.  Frye  R. J. 《Plant and Soil》2000,223(1-2):23-32
Seawater-irrigated halophyte systems have been proposed as sites for carbon storage, and therefore the fate of halophyte-derived carbon in the soil needs to be determined. To evaluate the role of the microfloral and microfaunal communities in soil carbon cycling of a halophyte agroecosystem, the response to various agronomic practices was investigated. Biomass and activity of the soil microflora and the abundance and trophic composition of the soil microfauna were determined under three planting densities of the halophyte Salicornia bigelovii (Chenopodiaceae) in plots with and without incorporated post-harvest halophyte residues. Microbial biomass and activity, as well as the abundance of nematode grazers, increased in response to the amendment of soil with halophyte residues. The microbial response to the density and presence of halophyte plants was, however, limited. Microbial activity increased in response to the presence of plants only after Salicornia had entered senescence, a result suggesting that in the mineral soil where halophytes were cropped, only dead root material provided a significant amount of microbially available organic matter. Success of halophyte agroecosystems in storing plant-derived carbon will depend primarily on the management of post-harvest residues and secondarily on the growing practices used prior to plant senescence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号