首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Butanol has been considered as a better alternative fuel and it can be produced from anaerobic Clostridial fermentation. Though several enzymes are involved in the biosynthesis of butanol in Clostridia, butanol dehydrogenase (BDH) is understood to play a major role, which catalyzes the conversion of butyraldehyde into butanol at the expenditure of a cofactor NAD(P)H. Recently, the strain Clostridium sp. BOH3 is reported to generate high level of butanol from monosugars. To investigate the BDH activity at various stages of fermentation, BOH3 was cultured in reinforced Clostridial medium with 30 g/l of glucose at 35 °C and the cells were harvested periodically from acid production and solvent production phases. During acid production, NADPH-dependent BDH activity is higher than NADH dependent BDH. Conversely, NADH-BDH activity is predominant during solvent production phase. The optimum pHs for NADH and NADPH-BDH are estimated as pH?6 and 8, respectively. By employing three steps of purification, NADH-BDH is purified to 102-fold with 36 % yield. Subsequent characterization reveals that NADH-BDH is a dimer composed of two subunits depicting the molecular weight of 44 kDa. The peptide finger printing analysis (MS/MS) suggests that the purified protein has higher homology with bifunctional acetaldehyde-CoA and alcohol dehydrogenase of Clostridium acetobutylicum. The extensive kinetic studies show that NADH-BDH follows an ordered sequential bi bi mechanism. The calculated values of K butyraldehyde and K NADH are 8.35?±?0.25 and 0.076?±?0.02 mM, respectively, whereas V max is 4.02?±?0.07 μmol/(mg protein. min). The purified NADH-BDH retains 70 % of its initial activity after 7 days at 4 °C.  相似文献   

2.
3.
Penicillum sp. 40, which can grow in an extremely acidic medium at pH 2.0 was screened from an acidic soil. This fungus produces xylanases when grown in a medium containing xylan as a sole carbon source. A major xylanase was purified from the culture supernatant of Penicillium sp. 40 and designated XynA. The molecular mass of XynA was estimated to be 25,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. XynA has an optimum pH at 2.0 and is stable in pH 2.0-5.0. Western blot analysis using anit-XynA antibody showed that XynA was induced by xylan and repressed by glucose. Also, its production was increased by an acidic medium. The gene encoding XynA (xynA) was isolated from the genomic library of Penicillium sp. 40. The structural part of xynA was found to be 721 bp. The nucleotide sequence of cDNA amplified by RT-PCR showed that the open reading frame of xynA was interrupted by a single intron which was 58 bp in size and encoded 221 amino acids. Direct N-terminal amino acid sequencing showed that the precursor of XynA had a signal peptide composed of 31 amino acids. The molecular mass caliculated from the deduced amino acid sequence of XynA is 20,713. This is lower than that estimated by gel electrophoresis, suggesting that XynA is a glycoprotein. The predicted amino acid sequence of XynA has strong similarity to other family11 xylanases from fungi.  相似文献   

4.
Culture conditions for efficient production of extracellular xylanase by fungus, Chaetomium globosum isolate Cg2, have been standardized. Further, xylanase has been partially purified and characterized. Xylanase activity was maximum after 9 days of incubation when amended in medium with 1.5 % xylan as carbon source and 0.6% NH4H2PO4 as nitrogen source. Partial purification of the xylanase was accomplished by ammonium sulphate precipitation, followed by further purification by anion exchange chromatography on DEAE-Sephadex A-50 column. The partially purified enzyme was electrophoresed on SDS-PAGE and a single band produced corresponded to molecular weight, 32 kD. The optimum temperature and pH for maximum activity of purified xylanase were 30°C and 5.5, respectively. Both the purified xylanase and culture filtrate have shown the antifungal activity against Bipolaris sorokiniana, a causal organism of spot blotch of wheat. Purified xylanase at 100 μg ml?1 concentration caused 100 per cent inhibition of conidia germination of B. sorokiniana, whereas the culture filtrate was able to inhibit germination up to 67.5 per cent.  相似文献   

5.
The gene coding for d-psicose 3-epimerase (DPEase) from Clostridium sp. BNL1100 was cloned and expressed in Escherichia coli. The recombinant enzyme was purified by Ni-affinity chromatography. It was a metal-dependent enzyme and required Co2+ as optimum cofactor. It displayed catalytic activity maximally at pH 8.0 and 65 °C (as measured over 5 min). The optimum substrate was d-psicose, and the K m, turnover number (k cat), and catalytic efficiency (k cat/K m) for d-psicose were 227 mM, 32,185 min?1, and 141 min?1 mM?1, respectively. At pH 8.0 and 55 °C, 120 g d-psicose l?1 was produced from 500 g d-fructose l?1 after 5 h.  相似文献   

6.
We found two kinds of benzonitrilases, designated benzonitrilases A and B, in a cell extract of Arthrobacter sp. strain J-1 grown on benzonitrile as a sole carbon and nitrogen source. Benzonitrilases A and B were purified approximately 409-fold and 38-fold, respectively. Purified benzonitrilase A appeared to be homogeneous according to the criteria of polyacrylamide gel electrophoresis. Both the enzymes hydrolyzed benzonitrile to benzoic acid and ammonia without forming benzamide as an intermediate. The molecular weights of benzonitrilases A and B were found to be 30,000 and 23,000, respectively. The subunit molecular weight of benzonitrilase A was the same as its molecular weight. The isoelectric points of benzonitrilases A and B were 4.95 and 4.80, respectively. The optimum temperature and pH, respectively, for benzonitrilase A were 40°C and 8.5, and those for benzonitrilase B were 30°C and 7.5. The Km values for benzonitrilases A and B were 6.7 mM and 4.5 mM, respectively. Both the enzymes degraded p-tolunitrile, 4-cyanopyridine, and p-chlorobenzonitrile, but they did not attack aliphatic nitriles or amides. Both the enzymes were inhibited by thiol reagents.  相似文献   

7.
We report here the characterization of the catalytic component (ISP(NAR)) of a new naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. The genes encoding the two subunits of ISP(NAR) are not homologous to their previously characterized counterparts in Pseudomonas. The deduced amino acid sequences have only 33 and 29% identity with the corresponding subunits in Pseudomonas putida NCIB 9816-4, for which the tertiary structure has been reported.  相似文献   

8.
Xylan is the major component of hemicellulose, and xylan should be fully utilized to improve the efficiencies of a biobased economy. There are a variety of industrial reaction conditions in which an active xylanase enzyme would be desired. As a result, xylanase enzymes with different activity profiles are of great interest. We isolated a xylanase gene (xyn10) from a Flavobacterium sp. whose sequence suggests that it is a glycosyl hydrolase family 10 member. The enzyme has a temperature optimum of 30°C, is active at cold temperatures, and is thermolabile. The enzyme has an apparent Km of 1.8 mg/ml and kcat of 100 sec−1 for beechwood xylan, attacks highly branched native xylan substrates, and does not have activity against glucans.  相似文献   

9.
A bacterium capable of hydrolyzing carbaryl (1-naphthyl-N-methylcarbamate) was isolated from a soil enrichment. This bacterium was characterized taxonomically as a Blastobacter sp. and designated strain M501. A carbaryl hydrolase present in this strain was purified to homogeneity by protamine sulfate treatment, ammonium sulfate precipitation, and hydrophobic, anion-exchange, gel filtration, and hydroxylapatite chromatographies. The native enzyme had a molecular mass of 166,000 Da and was composed of two subunits with molecular masses of 84,000 Da. The optimum pH and temperature of the enzyme activity were 9.0 and 45°C, respectively. The enzyme was not stable at temperatures above 40°C. The purified enzyme hydrolyzed seven N-methylcarbamate insecticides and also exhibited activity against 1-naphthyl acetate and 4-nitrophenyl acetate.  相似文献   

10.
链霉菌Strz-2胞外木聚糖酶的纯化和固定化研究   总被引:2,自引:0,他引:2  
为探讨木聚糖酶被固定化后的酶活力变化 ,采用盐析、离子交换和分子筛层析方法对链霉菌胞外木聚糖酶进行了纯化 ,并采用DNS方法对固定化酶的性质进行了研究。结果如下 :粗酶液被纯化了 30 .5倍 ,比活力达 4 5 7.5 ,活力回收 4 2 .6 %。纯化后的酶固定在戊二醛交联的壳聚糖上 ,残活力为 4 1.8%。固定化酶的最适pH为 6 .0 ,最适温度为 5 5℃ ,且固定化酶在 6 5 -75℃活力都较高。该酶的耐热性比较强 ,固定化酶热稳定性优于原酶 ;以木聚糖为底物 ,固定化酶的表观米氏常数为 0 .83× 10 -2g/L。因此 ,固定化的木聚糖酶优于原酶  相似文献   

11.
琼斯氏菌(Jonesia sp.)YNUCC0043耐碱木聚糖酶的特性   总被引:1,自引:0,他引:1  
从造纸黑液中筛选到一株产木聚糖酶琼斯氏菌YNUCC0043。在含3%玉米芯和0.5%牛肉膏的碱性无机盐培养基中,发酵液木聚糖酶活力达48.50U/ml。其木聚糖酶的最适反应温度为60℃,最适pH值8.0。该木聚糖酶在pH值6~11,温度60℃以下比较稳定。对该菌株16SrDNA的1456bp片段的序列分析结果表明,琼斯氏菌YNUCC0043与青海琼斯氏菌DSM15701和琼斯氏菌SC06的系统发育关系最近。  相似文献   

12.
In the bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), salicylate hydroxylases catalyze essential reactions at the junction between the so-called upper and lower catabolic pathways. Unlike the salicylate 1-hydroxylase from pseudomonads, which is a well-characterized flavoprotein, the enzyme found in sphingomonads appears to be a three-component Fe-S protein complex, which so far has not been characterized. Here, the salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1 was purified, and its biochemical and catalytic properties were characterized. The oxygenase component, designated PhnII, exhibited an α3β3 heterohexameric structure and contained one Rieske-type [2Fe-2S] cluster and one mononuclear iron per α subunit. In the presence of purified reductase (PhnA4) and ferredoxin (PhnA3) components, PhnII catalyzed the hydroxylation of salicylate to catechol with a maximal specific activity of 0.89 U/mg and showed an apparent Km for salicylate of 1.1 ± 0.2 μM. The hydroxylase exhibited similar activity levels with methylsalicylates and low activity with salicylate analogues bearing additional hydroxyl or electron-withdrawing substituents. PhnII converted anthranilate to 2-aminophenol and exhibited a relatively low affinity for this substrate (Km, 28 ± 6 μM). 1-Hydroxy-2-naphthoate, which is an intermediate in phenanthrene degradation, was not hydroxylated by PhnII, but it induced a high rate of uncoupled oxidation of NADH. It also exerted strong competitive inhibition of salicylate hydroxylation, with a Ki of 0.68 μM. The properties of this three-component hydroxylase are compared with those of analogous bacterial hydroxylases and are discussed in light of our current knowledge of PAH degradation by sphingomonads.  相似文献   

13.
Hydroxyquinol 1,2-dioxygenase was purified from cells of the soil bacterium Azotobacter sp. strain GP1 grown with 2,4,6-trichlorophenol as the sole source of carbon. The presumable function of this dioxygenase enzyme in the degradative pathway of 2,4,6-trichlorophenol is discussed. The enzyme was highly specific for 6-chlorohydroxyquinol (6-chloro-1,2,4-trihydroxybenzene) and hydroxyquinol (1,2,4-trihydroxybenzene) and was found to perform ortho cleavage of the hydroxyquinol compounds, yielding chloromaleylacetate and maleylacetate, respectively. With the conversion of 1 mol of 6-chlorohydroxyquinol, the consumption of 1 mol of O(inf2) and the formation of 1 mol of chloromaleylacetate were observed. Catechol was not accepted as a substrate. The enzyme has to be induced, and no activity was found in cells grown on succinate. The molecular weight of native hydroxyquinol 1,2-dioxygenase was estimated to 58,000, with a sedimentation coefficient of 4.32. The subunit molecular weight of 34,250 indicates a dimeric structure of the dioxygenase enzyme. The addition of Fe(sup2+) ions significantly activated enzyme activity, and metal-chelating agents inhibited it. Electron paramagnetic resonance data are consistent with high-spin iron(III) in a rhombic environment. The NH(inf2)-terminal amino acid sequence was determined for up to 40 amino acid residues and compared with sequences from literature data for other catechol and chlorocatechol dioxygenases.  相似文献   

14.
Enzymes IIa and IIb, which catalyze the conversion of epichlorohydrin (ECH) to 3-chloro-1,2-propanediol (MCP), were purified from Corynebacterium sp. strain N-1074, which catalyzes the formation of (R)-MCP from prochiral 1,3-dichloro-2-propanol via ECH. The specific activity of enzyme IIa for the formation of MCP from ECH was about 6.4-fold higher than that of enzyme IIb. Both enzymes catalyzed the conversion of 1,2-epoxides to the corresponding diol, although they differed in several enzymatic properties.  相似文献   

15.
Two different xylanases, CX-I and CX-II, from an alkalophilic fungus, Cephalosporium sp. strain RYM-202, have been purified to homogeneity. The enzymes had similar pH (7.5 to 8.0) and temperature (50(deg)C) optima and were stable over a wide pH range of 5.5 to 12.0. Both enzymes were shown to be cellulase-free endoxylanases with transglycosidation activity.  相似文献   

16.
17.
18.
19.
A moderately halophilic bacterium, Bacillus sp., isolated from rotting wood on the seashore in Nauru, produced an extracellular nuclease when cultivated aerobically in media containing 1 to 2 M NaCl. The enzyme was purified from the culture filtrate to an electrophoretically homogeneous state by ethanol precipitation, DEAE-Sephadex A-50 column chromatography, and Sephadex G-200 gel filtration. The enzyme consisted of two charge isomers and showed both RNase and DNase activities. Molecular weight was estimated to be 138,000 by Sephadex G-200 gel filtration. The enzyme had marked halophilic properties, showing maximal activities in the presence of 1.4 to 3.2 M NaCl or 2.3 to 3.2 M KCl. The enzyme hydrolyzed thymidine-5′-monophosphate-p-nitrophenyl ester at a rate that increased with NaCl concentration up to 4.8 M. In the presence of both Mg2+ and Ca2+, activity was greatly enhanced. The activity was lost by dialysis against water and low-salt buffer, but it was protected when 10 mM Ca2+ was added to the dialysis buffer. When the inactivated enzyme was dialyzed against 3.5 M NaCl buffer as much as 68% of the initial activity could be restored. The enzyme exhibited maximal activity at pH 8.5 and at 50°C on DNA and at 60°C on RNA and attacked RNA and DNA exonucleolytically and successively, producing 5′-mononucleotides.  相似文献   

20.
芽孢杆菌木聚糖酶的发酵条件研究   总被引:17,自引:3,他引:17  
本文研究了芽孢杆菌L23产木聚糖酶的时间曲线,碳源种类和浓度,添加物,发酵起始ph以及接种量对产酶的影响。该菌经37℃培养50小时,酶活力为30IU/ml,酶最适反应温度为57℃,最适pH值为7.0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号