首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C Ganea  C Gergely  K Ludmann    G Váró 《Biophysical journal》1997,73(5):2718-2725
The changes in the photocycle of the wild type and several mutant bacteriorhodopsin (D96N, E204Q, and D212N) were studied on dried samples, at relative humidities of 100% and 50%. Samples were prepared from suspensions at pH approximately 5 and at pH approximately 9. Intermediate M with unprotonated Schiff base was observed at the lower humidity, even in the case where the photocycle in suspension did not contain this intermediate (mutant D212N, high pH). The photocycle of the dried sample stopped at intermediate M1 in the extracellular conformation; conformation change, switching the accessibility of the Schiff base to the cytoplasmic side, and proton transport did not occur. The photocycle decayed slowly by dissipating the absorbed energy of the photon, and the protein returned to its initial bacteriorhodopsin state, through several M1-like substates. These substates presumably reflect different paths of the proton back to the Schiff base, as a consequence of the bacteriorhodopsin adopting different conformations by stiffening on dehydration. All intermediates requiring conformational change were hindered in the dried form. The concentration of intermediate L, which appears after isomerization of the retinal from all-trans to 13-cis, during local relaxation of the protein, was unusually low in dried samples. The lack of intermediates N and O demonstrated that the M state did not undergo a change from the extracellular to the cytoplasmic conformation (M1 to M2 transition), as already indicated by Fourier transform infrared spectroscopy, quasielastic incoherent neutron scattering, and electric signal measurements described in the literature.  相似文献   

2.
The actinic light effect on the bacteriorhodopsin (BR) photocycle kinetics led to the assumption of a cooperative interaction between the photocycling BR molecules. In this paper we report the results of the actinic light effect and pH on the proton release and uptake kinetics. An electrical method is applied to detect proton release and uptake during the photocycle [E. Papp, G. Fricsovszky, J. Photochem. Photobiol. B: Biol. 5 (1990) 321]. The BR photocycle kinetics was also studied by absorption kinetics measurements at 410 nm and the data were analyzed by the local analysis of the M state kinetics [E. Papp, V.H. Ha, Biophys. Chem. 57 (1996) 155]. While at high pH and ionic strength, we found a similar behavior as reported earlier, at low ionic strength the light effect proved to be more complex. The main conclusions are the following: Though the number of BR excited to the photocycle (fraction cycling, fc) goes to saturation with increasing laser pulse energy, the absorbed energy by BR increases linearly with pulse energy. From the local analysis we conclude that the light effect changes the kinetics much earlier, already at the L intermediate state decay. The transient electric signal, caused by proton release and uptake, can be decomposed into two components similarly to the absorption kinetic data of the M intermediate state. The actinic light energy affects mainly the ratio of the two components and the proton movements inside BR while pH has an effect on the kinetics of the proton release and uptake groups at the membrane surface.  相似文献   

3.
Millisecond photocycle kinetics were measured at room temperature for 13 site-specific bacteriorhodopsin mutants in which single aspartic acid residues were replaced by asparagine, glutamic acid, or alanine. Replacement of aspartic acid residues expected to be within the membrane-embedded region of the protein (Asp-85, -96, -115, or -212) produced large alterations in the photocycle. Substitution of Asp-85 or Asp-212 by Asn altered or blocked formation of the M410 photointermediate. Substitution of these two residues by Glu decreased the amount of M410 formed. Substitutions of Asp-96 slowed the decay rate of the M410 photointermediate, and substitutions of Asp-115 slowed the decay rate of the O640 photointermediate. Corresponding substitutions of aspartic acid residues expected to be in cytoplasmic loop regions of the protein (Asp-36, -38, -102, or -104) resulted in little or no alteration of the photocycle. Our results indicate that the defects in proton pumping which we have previously observed upon substitution of Asp-85, Asp-96, Asp-115, and Asp-212 [Mogi, T., Stern, L. J., Marti, T., Chao, B. H., & Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 4148-4152] are closely coupled to alterations in the photocycle. The photocycle alterations observed in these mutants are discussed in relation to the functional roles of specific aspartic acid residues at different stages of the bacteriorhodopsin photocycle and the proton pumping mechanism.  相似文献   

4.
Structural features on the extracellular side of the D85S mutant of bacteriorhodopsin (bR) suggest that wild-type bR could be a hydroxyl-ion pump. A position between the protonated Schiff base and residue 85 serves as an anion-binding site in the mutant protein, and hydroxyl ions should have access to this site during the O-intermediate of the wild-type bR photocycle. The guanidinium group of R82 is proposed (1) to serve as a shuttle that eliminates the Born energy penalty for entry of an anion into this binding pocket, and conversely, (2) to block the exit of a proton or a related proton carrier.  相似文献   

5.
Y Cao  G Váró  M Chang  B F Ni  R Needleman  J K Lanyi 《Biochemistry》1991,30(45):10972-10979
During the M in equilibrium with N----BR reaction sequence in the bacteriorhodopsin photocycle, proton is exchanged between D96 and the Schiff base, and D96 is reprotonated from the cytoplasmic surface. We probed these and the other photocycle reactions with osmotically active solutes and perturbants and found that the M in equilibrium with N reaction is specifically inhibited by withdrawing water from the protein. The N----BR reaction in the wild-type protein and the direct reprotonation of the Schiff base from the cytoplasmic surface in the site-specific mutant D96N are much less affected. Thus, it appears that water is required inside the protein for reactions where a proton is separated from a buried electronegative group, but not for those where the rate-limiting step is the capture of a proton at the protein surface. In the wild type, the largest part of the barrier to Schiff base reprotonation is the enthalpy of separating the proton from D96, which amounts to about 40 kJ/mol. We suggest that in spite of this D96 confers an overall kinetic advantage because when this residue becomes anionic in the N state its electric field near the cytoplasmic surface lowers the free energy barrier of the capture of a proton in the next step. In the D96N protein, the barrier to the M----BR reaction is 20 kJ/mol higher than what would be expected from the rates of the M----N and N----BR partial reactions in the wild type, presumably because this mechanism is not available.  相似文献   

6.
Xiaoxia Ge  M. R. Gunner 《Proteins》2016,84(5):639-654
Bacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, several key sites undergo protonation changes during the photocycle, moving protons from the higher pH cytoplasm to the lower pH extracellular side. The mechanism underlying the long‐range proton translocation between the central (the retinal Schiff base SB216, D85, and D212) and exit clusters (E194 and E204) remains elusive. To obtain a dynamic view of the key factors controlling proton translocation, a systematic study using molecular dynamics simulation was performed for eight bacteriorhodopsin models varying in retinal isomer and protonation states of the SB216, D85, D212, and E204. The side‐chain orientation of R82 is determined primarily by the protonation states of the residues in the EC. The side‐chain reorientation of R82 modulates the hydrogen‐bond network and consequently possible pathways of proton transfer. Quantum mechanical intrinsic reaction coordinate calculations of proton‐transfer in the methyl guanidinium‐hydronium‐hydroxide model system show that proton transfer via a guanidinium group requires an initial geometry permitting proton donation and acceptance by the same amine. In all the bacteriorhodopsin models, R82 can form proton wires with both the CC and the EC connected by the same amine. Alternatively, rare proton wires for proton transfer from the CC to the EC without involving R82 were found in an O′ state where the proton on D85 is transferred to D212. Proteins 2016; 84:639–654. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
We report a comprehensive electron crystallographic analysis of conformational changes in the photocycle of wild-type bacteriorhodopsin and in a variety of mutant proteins with kinetic defects in the photocycle. Specific intermediates that accumulate in the late stages of the photocycle of wild-type bacteriorhodopsin, the single mutants D38R, D96N, D96G, T46V, L93A and F219L, and the triple mutant D96G/F171C/F219L were trapped by freezing two-dimensional crystals in liquid ethane at varying times after illumination with a light flash. Electron diffraction patterns recorded from these crystals were used to construct projection difference Fourier maps at 3.5 A resolution to define light-driven changes in protein conformation.Our experiments demonstrate that in wild-type bacteriorhodopsin, a large protein conformational change occurs within approximately 1 ms after illumination. Analysis of structural changes in wild-type and mutant bacteriorhodopsins under conditions when either the M or the N intermediate is preferentially accumulated reveals that there are only small differences in structure between M and N intermediates trapped in the same protein. However, a considerably larger variation is observed when the same optical intermediate is trapped in different mutants. In some of the mutants, a partial conformational change is present even prior to illumination, with additional changes occurring upon illumination. Selected mutations, such as those in the D96G/F171C/F219L triple mutant, can sufficiently destabilize the wild-type structure to generate almost the full extent of the conformational change in the dark, with minimal additional light-induced changes. We conclude that the differences in structural changes observed in mutants that display long-lived M, N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. Our observations thus support a simplified view of the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M1) are well approximated by one protein conformation, while the structures of the later intermediates (M2, N and O) are well approximated by the other protein conformation. We propose that in wild-type bacteriorhodopsin and in most mutants, this conformational change between the M1 and M2 states is likely to make an important contribution towards efficiently switching proton accessibility of the Schiff base from the extracellular side to the cytoplasmic side of the membrane.  相似文献   

8.
In the light-driven bacteriorhodopsin proton pump, the first proton transfer step is from the retinal Schiff base to a nearby carboxylate group. The mechanism of this transfer step is highly controversial, in particular whether a direct proton jump is allowed. Here, we review the structural and energetic determinants of the direct proton transfer path computed by using a combined quantum mechanical/molecular mechanical approach. Both protein flexibility and electrostatic interactions play an important role in shaping the proton transfer energy profile. Detailed analysis of the energetics of putative transitions in the first half of the photocycle focuses on two elements that determine the likelihood that a given configuration of the active site is populated during the proton-pumping cycle. First, the rate-limiting barrier for proton transfer must be consistent with the kinetics of the photocycle. Second, the active-site configuration must be compatible with a productive overall pumping cycle.  相似文献   

9.
The switch in the bacteriorhodopsin photocycle, which reorients access of the retinal Schiff base from the extracellular to the cytoplasmic side, was suggested to be an M1----M2 reaction (Váró and Lanyi. 1991. Biochemistry. 30:5008-5015, 5016-5022). Thus, in this light-driven proton pump it is the interconversion of proposed M substates that gives direction to the transport. We find that in monomeric, although not purple membrane-lattice immobilized, D115N bacteriorhodopsin, the absorption maximum of M changes during the photocycle: in the time domain between its rise and decay it shifts 15 nm to the blue relative to the spectrum at earlier times. This large shift strongly supports the existence of two M substates. Since D115 is located near the beta-ionone ring of the retinal, the result raises questions about the possible involvement of the retinal chain or protein residues as far away as 10 A from the Schiff base in the mechanism of the switching reaction.  相似文献   

10.
Recent structures of putative intermediates in the bacteriorhodopsin photocycle have provided valuable snapshots of the mechanism by which protons are pumped across the membrane. However, key steps remain highly controversial, particularly the proton transfer occurring immediately after retinal trans-->cis photoisomerization. The gradual release of stored energy is inherently nonequilibrium: which photocycle intermediates are populated depends not only on their energy but also on their interconversion rates. To understand why the photocycle follows a productive (i.e., pumping), rather than some unproductive, relaxation pathway, it is necessary to know the relative energy barriers of individual steps. To discriminate between the many proposed scenarios of this process, we computed all its possible minimum-energy paths. This reveals that not one, but three very different pathways have energy barriers consistent with experiment. This result reconciles the conflicting views held on the mechanism and suggests a strategy by which the protein renders this essential step resilient.  相似文献   

11.
The second half of the photocycle of the light-driven proton pump bacteriorhodopsin includes proton transfers between D96 and the retinal Schiff base (the M to N reaction) and between the cytoplasmic surface and D96 (decay of the N intermediate). The inhibitory effects of decreased water activity and increased hydrostatic pressure have suggested that a conformational change resulting in greater hydration of the cytoplasmic region is required for proton transfer from D96 to the Schiff base, and have raised the possibility that the reversal of this process might be required for the subsequent reprotonation of D96 from the cytoplasmic surface. Tilt of the cytoplasmic end of helix F has been suggested by electron diffraction of the M intermediate. Introduction of bulky groups, such as various maleimide labels, to engineered cysteines at the cytoplasmic ends of helices A, B, C, E, and G produce only minor perturbation of the decays of M and N, but major changes in these reactions when the label is linked to helix F. In these samples the reprotonation of the Schiff base is accelerated and the reprotonation of D96 is strongly retarded. Cross-linking with benzophenone introduced at this location, but not at the others, causes the opposite change: the reprotonation of the Schiff base is greatly slowed while the reprotonation of D96 is accelerated. We conclude that, consistent with the structure from diffraction, the proton transfers in the second half of the photocycle are facilitated by motion of the cytoplasmic end of helix F, first away from the center of the protein and then back.  相似文献   

12.
In the photocycle of bacteriorhodopsin (bR), light-induced transfer of a proton from the Schiff base to an acceptor group located in the extracellular half of the protein, followed by reprotonation from the cytoplasmic side, are key steps in vectorial proton pumping. Between the deprotonation and reprotonation events, bR is in the M state. Diverse experiments undertaken to characterize the M state support a model in which the M state is not a static entity, but rather a progression of two or more functional substates. Structural changes occurring in the M state and in the entire photocycle of wild-type bR can be understood in the context of a model which reconciles the chloride ion-pumping phenotype of mutants D85S and D85T with the fact that bR creates a transmembrane proton-motive force.  相似文献   

13.
Liu Y  Edens GJ  Grzymski J  Mauzerall D 《Biochemistry》2008,47(29):7752-7761
The volume and enthalpy changes associated with proton translocation steps during the bacteriorhodopsin (BR) photocycle were determined by time-resolved photopressure measurements. The data at 25 degrees C show a prompt increase in volume followed by two further increases and one decrease to the original state to complete the cycle. These volume changes are decomposed into enthalpy and inherent volume changes. The positive enthalpy changes support the argument for inherent entropy-driven late steps in the BR photocycle [Ort, D. R., and Parson, W. M. (1979) Enthalpy changes during the photochemical cycle of bacteriorhodopsin. Biophys. J. 25, 355-364]. The volume change data can be interpreted by the electrostriction effect as charges are canceled and formed during the proton transfers. A simple glutamic acid-glutamate ion model or a diglutamate-arginine-protonated water charge-delocalized model for the proton-release complex (PRC) fit the data. A conformational change with a large positive volume change is required in the slower rise (M --> N of the optical cycle) step and is reversed in the decay (N --> O --> BR) steps. The large variation in the published values for both the volume and enthalpy changes is greatly ameliorated if the values are presented per absorbed photon instead of per mole of BR. Thus, it is the highly differing assumptions about the quantum or reaction yields that cause the variations in the published results.  相似文献   

14.
The possible mechanisms of electrogenic processes accompanying proton transport in bacteriorhodopsin are discussed on the basis of recent structural data of the protein. Apparent inconsistencies between experimental data and their interpretation are considered. Special emphasis is placed on the protein conformational changes accompanying the reprotonation of chromophore and proton uptake stage in the bacteriorhodopsin photocycle.  相似文献   

15.
It was recently found that NOP-1, a membrane protein of Neurospora crassa, shows homology to haloarchaeal rhodopsins and binds retinal after heterologous expression in Pichia pastoris. We report on spectroscopic properties of the Neurospora rhodopsin (NR). The photocycle was studied with flash photolysis and time-resolved Fourier-transform infrared spectroscopy in the pH range 5-8. Proton release and uptake during the photocycle were monitored with the pH-sensitive dye, pyranine. Kinetic and spectral analysis revealed six distinct states in the NR photocycle, and we describe their spectral properties and pH-dependent kinetics in the visible and infrared ranges. The phenotypes of the mutant NR proteins, D131E and E142Q, in which the homologues of the key carboxylic acids of the light-driven proton pump bacteriorhodopsin, Asp-85 and Asp-96, were replaced, show that Glu-142 is not involved in reprotonation of the Schiff base but Asp-131 may be. This implies that, if the NR photocycle is associated with proton transport, it has a low efficiency, similar to that of haloarchaeal sensory rhodopsin II. Fourier-transform Raman spectroscopy revealed unexpected differences between NR and bacteriorhodopsin in the configuration of the retinal chromophore, which may contribute to the less effective reprotonation switch of NR.  相似文献   

16.
The role of Thr-46 and Thr-89 in the bacteriorhodopsin photocycle has been investigated by Fourier transform infrared difference spectroscopy and time-resolved visible absorption spectroscopy of site-directed mutants. Substitutions of Thr-46 and Thr-89 reveal alterations in the chromophore and protein structure during the photocycle, relative to wild-type bacteriorhodopsin. The mutants T89D and to a lesser extent T89A display red shifts in the visible lambda max of the light-adapted states compared with wild type. During the photocycle, T89A exhibits an increased decay rate of the K intermediate, while a K intermediate is not detected in the photocycle of T89D at room temperature. In the carboxyl stretch region of the Fourier transform infrared difference spectra of T89D, a new band appears as early as K formation which is attributed to the deprotonation of Asp-89. Along with this band, an intensity increase occurs in the band assigned to the protonation of Asp-212. In the mutant T46V, a perturbation in the environment of Asp-96 is detected in the L and M intermediates which corresponds to a drop in its pK alpha. These data indicate that Thr-89 is located close to the chromophore, exerts steric constraints on it during all-trans to 13-cis isomerization, and is likely to participate in a hydrogen-bonding network that extends to Asp-212. In addition, a transient interaction between Thr-46 and Asp-96 occurs early in the photocycle. In order to explain these results, a previously proposed model of proton transport is extended to include the existence of a transient network of hydrogen-bonded residues. This model can account for the protonation changes of key amino acid residues during the photocycle of bacteriorhodopsin.  相似文献   

17.
Photoinduced changes in absorption of the deprotonated M-form in the mutant bacteriorhodopsin without primary proton acceptor Asp-85 were studied and additional evidence in support of the complete transmembrane proton transfer in photocycle was obtained. Measurements of the absorption spectrum were carried out at various pH, temperature, and humidity. The direction of proton transfer was the same as in the normal photocycle of the wild-type bacteriorhodopsin: from the internal to the external side of the membrane. The effect on this process of a terminal acceptor Glu-204 was shown.  相似文献   

18.
The bacteriorhodopsin photocycle contains more than five spectrally distinct intermediates, and the complexity of their interconversions has precluded a rigorous solution of the kinetics. A representation of the photocycle of mutated D96N bacteriorhodopsin near neutral pH was given earlier (Váró, G., and J. K. Lanyi. 1991. Biochemistry. 30:5008-5015) as BRhv-->K<==>L<==>M1-->M2--> BR. Here we have reduced a set of time-resolved difference spectra for this simpler system to three base spectra, each assumed to consist of an unknown mixture of the pure K, L, and M difference spectra represented by a 3 x 3 matrix of concentration values between 0 and 1. After generating all allowed sets of spectra for K, L, and M (i.e., M1 + M2) at a 1:50 resolution of the matrix elements, invalid solutions were eliminated progressively in a search based on what is expected, empirically and from the theory of polyene excited states, for rhodopsin spectra. Significantly, the average matrix values changed little after the first and simplest of the search criteria that disallowed negative absorptions and more than one maximum for the M intermediate. We conclude from the statistics that during the search the solutions strongly converged into a narrow region of the multidimensional space of the concentration matrix. The data at three temperatures between 5 and 25 degrees C yielded a single set of spectra for K, L, and M; their fits are consistent with the earlier derived photocycle model for the D96N protein.  相似文献   

19.
A one-of-a-kind high speed optical multichannel spectrometer was designed and built at NIH and described in this journal in 1997 [J.W. Cole, R.W. Hendler, P.D. Smith, H.A. Fredrickson, T.J. Pohida, W.S. Friauf. A high speed optical multichannel analyzer. J Biochem Biophys Methods 1997;35:16–174.]. The most unique aspect of this instrument was the ability to follow an entire time course from a single activation using a single sample. The instrument has been used to study rapid kinetic processes in the photon-driven bacteriorhodopsin photocycle and electron transport from cytochrome c to cytochrome aa3 and from cytochrome aa3 to oxygen. The present paper describes a second generation instrument with a number of important enhancements which significantly improve its capabilities for multichannel kinetic studies. An example application is presented in which the kinetics of photon-induced proton flow across the biological membrane is measured simultaneously with the individual steps of the photocycle determined optically. Matching the time constants for the two processes indicates which molecular transformations are associated with major proton movements.  相似文献   

20.
Electric field induced pH changes of purple membrane suspensions were investigated in the pH range from 4.1 to 7.6 by measuring the absorbance change of pH indicators. In connection with the photocycle and proton pump ability, three different states of bacteriorhodopsin were used: (1) the native purple bacteriorhodopsin (magnesium and calcium ions are bound, the M intermediate exists in the photocycle and protons are pumped), (2) the cation-depleted blue bacteriorhodopsin (no M intermediate), and (3) the regenerated purple bacteriorhodopsin which is produced either by raising the pH or by adding magnesium ions (the M intermediate exists). In the native purple bacteriorhodopsin there are, at least, two types of proton binding sites: one releases protons and the other takes up protons in the presence of the electric field. On the other hand, blue bacteriorhodopsin and the regenerated purple bacteriorhodopsin (pH increase) show neither proton release nor proton uptake. When magnesium ions are added to the suspensions; the field-induced pH change is observed again. Thus, the stability of proton binding depends strongly on the state of bacteriorhodopsin and differences in proton binding are likely to be related to differences in proton pump activity. Furthermore, it is suggested that the appearance of the M intermediate and proton pumping are not necessarily related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号