首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase; EC 2.8.1.1) has been renatured from 6 M guanidinium chloride (GdmCl) by direct dilution of the denaturant at relatively high protein concentrations. This has been made possible by using the nonionic detergent dodecyl-beta-D-maltoside (lauryl maltoside). Lauryl maltoside concentration dependence of the renaturation and reactivation time courses were studied using 50 micrograms/ml rhodanese. There was no renaturation at lauryl maltoside (less than 0.1 mg/ml), and the renaturability increased, apparently cooperatively, up to 5 mg/ml detergent. This may reflect weak binding of lauryl maltoside to intermediate rhodanese conformers. The renaturability began to decrease above 5 mg/ml lauryl maltoside and was significantly reduced at 20 mg/ml. Individual progress curves of product formation, for rhodanese diluted into lauryl maltoside 90 min before assay, showed induction phases as long as 7 min before an apparently linear steady state. The induction phase increased with lauryl maltoside concentration and could even be observed in native controls above 1 mg/ml detergent. These results are consistent with suggestions that refolding of GdmCl-denatured rhodanese involves an intermediate with exposed hydrophobic surfaces that can partition into active and inactive species. Further, lauryl maltoside can stabilize those surfaces and prevent aggregation and other hydrophobic interaction-dependent events that reduce the yield of active protein. The rhodanese-lauryl maltoside complex could also form with native enzyme, thus explaining the induction phase with this species. Finally, it is suggested that renaturation of many proteins might be assisted by lauryl maltoside or other "nondenaturing" detergents.  相似文献   

2.
Unfolded (inactive) rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) can be reactivated in the presence of detergents, e.g. lauryl maltoside (LM). Here, we report the reactivation of urea-unfolded rhodanese in the presence of mixed micelles containing LM and the anionic mitochondrial phospholipid, cardiolipin (CL). Reactivation times increased as the number of CL molecules/micelle was increased. A maximum of 94% of the activity was recovered at 2.2 CL/micelle. Only 71% of the activity was recovered in the absence of CL. The major zwitterionic mitochondrial phospholipid, phosphatidylcholine (PC), had no effect on the LM-assisted reactivation of rhodanese. Size exclusion chromatography showed that denatured, but not native, rhodanese apparently binds to micellar amounts of LM and CL/LM, but not to PC/LM micelles. The lifetime of the enzyme-micelle complex increased with the number of CL molecules/micelle. Furthermore, chromatographic fractions containing micelle-bound enzyme had no activity, while renatured rhodanese-containing fractions were active. These results suggest that transient complexes form between enzyme and both LM and CL/LM micelles, and that this complex formation may be necessary for reactivation. For CL/LM micelles, interactions may occur between the positively charged amino-terminal sequence of rhodanese and the negatively charged CL phosphate. Finally, this work shows that there are similarities between "micelle-assisted" and chaperonin-assisted rhodanese refolding.  相似文献   

3.
The chaperonin protein cpn60 from Escherichia coli protects the monomeric, mitochondrial enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) against heat inactivation. The thermal inactivation of rhodanese was studied for four different states of the enzyme: native, refolded, bound to cpn60 in the form of a binary complex formed from unfolded rhodanese, and a thermally perturbed state. Thermal stabilization is observed in a range of temperatures from 25 to 48 degrees C. Rhodanese that had been inactivated by incubation at 48 degrees C, in the presence of cpn60 can be reactivated at 25 degrees C, upon addition of cpn10, K+, and MgATP. A recovery of about 80% was achieved after 1 h of the addition of those components. Thus, the enzyme is protected against heat inactivation and kept in a reactivable form if inactivation is attempted using the binary complex formed between rhodanese folding intermediate(s) and cpn60. The chaperonin-assisted refolding of urea-denatured rhodanese is dependent on the temperature of the refolding reaction. However, optimal chaperonin assisted refolding of rhodanese observed at 25 degrees C, which is achieved upon addition of cpn10 and ATP to the cpn60-rhodanese complex, is independent of the temperature of preincubation of the complex, that was formed previously at low temperature. The results are in agreement with a model in which the chaperonin cpn60 interacts with partly folded intermediates by forming a binary complex which is stable to elevated temperatures. In addition, it appears that native rhodanese can be thermally perturbed to produce a state different from that achieved by denaturation that can interact with cpn60.  相似文献   

4.
Unassisted refolding of urea unfolded rhodanese   总被引:4,自引:0,他引:4  
In vitro refolding after urea unfolding of the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) normally requires the assistance of detergents or chaperonin proteins. No efficient, unassisted, reversible unfolding/folding transition has been demonstrated to date. The detergents or the chaperonin proteins have been proposed to stabilize folding intermediates that kinetically limit folding by aggregating. Based on this hypothesis, we have investigated a number of experimental conditions and have developed a protocol for refolding, without assistants, that gives evidence of a reversible unfolding transition and leads to greater than 80% recovery of native enzyme. In addition to low protein concentration (10 micrograms/ml), low temperatures are required to maximize refolding. Otherwise optimal conditions give less than 10% refolding at 37 degrees C, whereas at 10 degrees C the recovery approaches 80%. The unfolding/refolding phases of the transition curves are most similar in the region of the transition, and refolding yields are significantly reduced when unfolded rhodanese is diluted to low urea concentrations, rather than to concentrations near the transition region. This is consistent with the formation of "sticky" intermediates that can remain soluble close to the transition region. Apparently, nonnative structures, e.g. aggregates, can form rapidly at low denaturant concentrations, and their subsequent conversion to the native structure is slow.  相似文献   

5.
The competition between protein aggregation and folding has been investigated using rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) as a model. During folding from a urea-denatured state, rhodanese rapidly forms associated species or intermediates, some of which are large and/or sticky. The early removal of such particles by filtration results in a decreased refolding yield. With time, a portion of the smaller aggregates can partition back first to intermediates and then to refolded protein, while a fraction of these irreversibly form unproductive higher aggregates. Dynamic light scattering measurements indicate that the average sizes of the aggregates formed during rhodanese folding increase from 225 to 325 nm over 45 min and they become increasingly heterogeneous. Glycerol addition or the application of high hydrostatic pressure improved the final refolding yields by stabilizing smaller particles. Although addition of glycerol into the refolding mixture blocks the formation of unproductive aggregates, it cannot dissociate them back to productive intermediates. The presence of 3.9 M urea keeps the aggregates small, and they can be dissociated to monomers by high hydrostatic pressure even after 1 h of incubation. These studies suggest that early associated intermediates formed during folding can be reversed to give active species.  相似文献   

6.
The in vitro folding of rhodanese involves a competition between formation of properly folded enzyme and off-pathway inactive species. Co-solvents like glycerol or low temperature, e.g. refolding at 10 degrees C, successfully retard the off-pathway formation of large inactive aggregates, but the process does not yield 100% active enzyme. These data suggest that mis-folded species are formed from early folding intermediates. GroEL can capture early folding intermediates, and it loses the ability to capture and reactivate rhodanese if the enzyme is allowed first to spontaneously fold for longer times before it is presented to GroEL, a process that leads to the formation of unproductive intermediates. In addition, GroEL cannot reverse large aggregates once they are formed, but it could capture some folding intermediates and activate them, even though they are not capable of forming active enzyme if left to spontaneous refolding. The interaction between GroEL and rhodanese substantially but not completely inhibits intra-protein inactivation, which is responsible for incomplete activation during unassisted refolding. Thus, GroEL not only decreases aggregation, but it gives the highest reactivation of any method of assistance. The results are interpreted using a previously suggested model based on studies of the spontaneous folding of rhodanese (Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120--128 and Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63--70).  相似文献   

7.
It was previously shown that rhodanese, inactivated with hydrogen peroxide, could only be reactivated in the presence of a reductant or the substrate thiosulfate if these reagents were added soon after inactivation and if the oxidant was removed. Here, we report on the facilitated reactivation (75%) of hydrogen peroxide-inactivated rhodanese by the chaperone alpha-crystallin. Reactivation by the chaperone still required a reductant and thiosulfate. Without alpha-crystallin, but in the presence of the reductant and thiosulfate, the inactivated enzyme regained about 39% of its original activity. The alpha-crystallin-assisted reactivation of hydrogen peroxide-inactivated rhodanese was independent of ATP. Further, we found, that alpha-crystallin interacted transiently, but could not form a stable complex with hydrogen peroxide-inactivated rhodanese. Unlike in prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that alpha-crystallin can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein.  相似文献   

8.
In vitro refolding of the urea-unfolded, monomeric, mitochondrial enzyme rhodanese (thiosulfate sulfur-transferase; EC 2.8.1.1) is facilitated by the chaperonin proteins cpn60 and cpn10 from Escherichia coli at 37 degrees C, but the refolding is strongly inhibited at 10 degrees C. In contrast, the unassisted refolding of rhodanese is efficient at 10 degrees C, but the refolding efficiency decreases as the temperature is raised. These observations provided two measures of the cpn60-rhodanese complex. Thus, we monitored either 1) the cpn60-dependent inhibition of spontaneous folding at 10 degrees C or 2) the recovery of active rhodanese in the complete chaperonin system at 25 degrees C, after first forming a cpn60-rhodanese complex at 10 degrees C. These procedures minimized the aggregation of interactive folding intermediates that tend to overestimate the apparent number of cpn60 14-mers in determining the stoichiometry of protein-cpn60 14-mer interactions. Both procedures used here gave results that were consistent with there being 1 rhodanese binding site/cpn60 tetradecamer. This stoichiometry is significantly less than might be expected from the fact that cpn60 is composed of 14 identical subunits, and it may indicate that rhodanese interacts with a restricted region that is formed when the cpn60 tetradecamer is assembled. The ability to stabilize chaperonin-protein complexes that can subsequently be reactivated will aid studies of the mode of action of the ubiquitous chaperonin proteins.  相似文献   

9.
We have established the generality of using detergents for facilitating the reactivation of 6 M guanidinium chloride-denatured rhodanese that was recently described for the nonionic detergent lauryl maltoside (LM) (Tandon, S., and Horowitz, P. (1986) J. Biol. Chem. 261, 15615-15618). We report here that not only LM but other nonionic as well as ionic and zwitterionic detergents also have favorable effects in reactivating the denatured enzyme. Not all detergents are useful, and the favorable effects occur over a limited concentration range. Above and below that range there is little or no effect. Zwittergents, which represent a homologous series with varying critical micelle concentrations (CMCs) are effective only above their CMCs. Induction phases occur in the progress curves of rhodanese refolded in the presence of the effective detergents, suggesting the presence of refolding intermediates that are apparently stabilized by detergent interactions. Gel filtration chromatography of rhodanese with and without LM suggests that even though the renaturation of the denatured enzyme requires detergent at concentrations above its CMC, the enzyme does not bind an amount of detergent equivalent to a micelle. It is suggested that renaturation of other proteins might also be assisted by inclusion of "nondenaturing" detergents, although the optimal conditions will have to be determined for each individual case.  相似文献   

10.
Thein vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by theE. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1–23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11–23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.  相似文献   

11.
Controlled conditions have been found that give complete reactivation and long term stabilization of rhodanese (EC 2.8.1.1) after oxidative inactivation by hydrogen peroxide. Inactivated rhodanese was completely reactivated by reductants such as thioglycolic acid (TGA) (100 mM) and dithiothreitol (DTT) (100 mM) or the substrate thiosulfate (100 mM) if these reagents were added soon after inactivation. Reactivability fell in a biphasic first order process. At pH 7.5, in the presence of DTT inactive rhodanese lost 40% of its reactivability in less than 5 min, and the remaining 60% was lost more gradually (t 1/2 = 3.5 h). TGA reactivated better than DTT, and the rapid phase was much less prominent. If excess reagents were removed by gel filtration immediately after inactivation, there was time-independent and complete reactivability with TGA for at least 24 h, and the resulting samples were stable. Reactivable enzyme was resistant to proteolysis and had a fluorescence maximum at 335 nm, just as the native protein. Oxidized rhodanese, Partially reactivated by DTT, was unstable and lost activity upon further incubation. This inactive enzyme was fully reactivated by 200 mM TGA. Also, the enzyme could be reactivated by arsenite and high concentrations of cyanide. Addition of hydrogen peroxide (40-fold molar excess) to inactive rhodanese after column chromatography initiated a time-dependent loss of reactivability. This inactivation was a single first order process (t 1/2 = 25 min). Sulfhydryl titers showed that enzyme could be fully reactivated after the loss of either one or two sulfhydryl groups. Irreversibly inactivated enzyme showed the loss of one sulfhydryl group even after extensive reduction with TGA. The results are consistent with a two-stage oxidation of rhodanese. In the first stage there can form sulfenyl and/or disulfide derivative(s) at the active site sulfhydryl that are reducible by thioglycolate. A second stage could give alternate or additional oxidation states that are not easily reducible by reagents tried to date.  相似文献   

12.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (Ks) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reversed by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

13.
The enzyme rhodanese (thiosulfate sulfurtransferase; EC 2.8.1.1) is inactivated with a half-time of approximately 3 min when incubated with 50 mM NADH. NAD+, however, has virtually no effect on the activity. Inactivation can be prevented by the inclusion of the substrate thiosulfate. The concentration of thiosulfate giving half-protection is 0.038 mM. In addition, NADH, but not NAD+, is a competitive inhibitor with respect to thiosulfate in the catalyzed reaction (Ki = 8.3 mM). Fluorescence studies are consistent with a time-dependent oxidation of NADH in the presence of rhodanese. The sulfur-free form of rhodanese is more rapidly inactivated than the sulfur-containing form. Spectrophotometric titrations show that inactivation is accompanied by the loss of two free SH groups per enzyme molecule. Inactivation is prevented by the exclusion of air and the inclusion of EDTA (1 mM), and the enzyme activity can be largely protected by incubation with superoxide dismutase or catalase. Rhodanese, inactivated with NADH, can be reactivated by incubation with the substrate thiosulfate (75 mM) for 48 h or more rapidly, but only partially, by incubating with 180 mM dithiothreitol. It is concluded that, in the presence of rhodanese, NADH can be oxidized by molecular oxygen and produce intermediates of oxygen reduction, such as superoxide and/or hydrogen peroxide, that can inactivate the enzyme with consequent formation of an intraprotein disulfide. In addition, NADH, but not NAD+, can reversibly bind to the active site region in competition with thiosulfate. These data are of interest in view of x-ray studies that show structural similarities between rhodanese and nucleotide binding proteins.  相似文献   

14.
Reactivation of denatured rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) was found to be aided by the presence of serum albumin. Both the rate and the extent of reactivation of the urea-denatured enzyme were optimal at low rhodanese and moderate serum albumin concentrations. Similarly, stabilization of the sulfurtransferase activity of rhodanese that had been partially unfolded at 40°C was aided by the presence of serum albumin. All the observations are in accord with a model in which enzyme that has been partially refolded from the urea-denatured state or partially unfolded thermally interacts directly with serum albumin in a way that prevents rhodanese self-association. Serum albumin thus acts as a molecular chaperone in these systems.  相似文献   

15.
With decreasing temperature the reactivation yield of denatured D-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) upon dilution increases but the reactivation rate decreases. Neither reactivation nor aggregation during refolding can be detected at 4 degrees C in 48 h, and at 3 degrees C even in 6 days. However, the reactivation takes place once the temperature is raised with little decrease of the yield after incubation for 6 days at 3 degrees C. A cold folding intermediate forms in a burst phase of refolding at 4 degrees C as shown by a fast change of the intrinsic fluorescence followed by further conformational adjustment to a stable state in about 1 h. The stable folding intermediate has been characterized to be a dimer of partially folded GAPDH subunit with secondary structure between that of the native and denatured enzymes, a hydrophobic cluster not found in either the native or the denatured state, and an active site similar to but different from that of the native state. Chaperonin 60 (GroEL) binds with all intermediates formed at 4 degrees C, but the intermediates formed at the early folding stage reactivate with higher yield than those formed after conformational adjustment when dissociated from GroEL in the presence of ATP and further folded and assembled into the native tetramer.  相似文献   

16.
Heat-stable pullulanase from Bacillus acidopullulyticus was characterized with respect to its stability against thermal and chemical denaturation and its reactivation after complete chemical unfolding. The enzyme was quite thermostable and retained 55% of activity after heating at 60°C for 30 min at pH 5.5. At pH 6.0, only 9% residual activity was observed. The addition of sucrose, polyols, and Na2SO4 strongly stabilized the enzyme against thermal inactivation. The processes of chemical unfolding by guanidinium chloride (GdmCl) and refolding were studied by enzymological and spectroscopic criteria. B. acidopullulyticus pullulanase was very sensitive to GdmCl denaturation and had a transition midpoint at 1.2 M GdmCl. Reactivation after complete unfolding in 5 M GdmCl was initiated by dilution of the unfolding mixture; 67% reactivation was observed under standard conditions. The influence of some chemical and physical parameters (pH, chemical agents, temperature, and unfolding and refolding time) on refolding was investigated. Of the additives tested to assist reactivation, only bovine serum albumin (BSA) increased the yield of activity to 80%. The full regain of structure and activity was proven by comparing the enzymological, physicochemical, and spectroscopic properties of the native and refolded pullulanase. Received: June 22, 1998 / Accepted: December 11, 1998  相似文献   

17.
In vitro refolding of the monomeric mitochondrial enzyme, rhodanese (thiosulfate sulfurtransferase; EC 2.8.1.1) is facilitated by molecular chaperonins. The four components: two proteins from Escherichia coli, chaperonin 60 (groEL) and chaperonin 10 (groES), MgATP, and K+, are necessary for the in vitro folding of rhodanese. These were previously shown to be necessary for the in vitro folding of ribulose-1,5-bisphosphate carboxylase at temperatures in excess of 25 degrees C (Viitanen, P. V., Lubben, T. H., Reed, J., Goloubinoff, P., O'Keefe, D. P., and Lorimer, G. H. (1990) Biochemistry 29, 5665-5671). The labile folding intermediate, rhodanese-I, which rapidly aggregates at 37 degrees C in the absence of the chaperonins, can be stabilized by forming a binary complex with chaperonin 60. The discharge of the binary chaperonin 60-rhodanese-I complex, results in the formation of active rhodanese, and requires the presence of chaperonin 10. Optimal refolding is associated with a K(+)-dependent hydrolysis of ATP. At lower protein concentrations and 25 degrees C, where aggregation is reduced, a fraction of the rhodanese refolds to an active form in the absence of the chaperonins. This spontaneous refolding can be arrested by chaperonin 60. There is some refolding (approximately equal to 20%) when ATP is replaced by nonhydrolyzable analogs, but there is no refolding in the presence of ADP or AMP. ATP analogs may interfere with the interaction of rhodanese-I with the chaperonins. Nondenaturing detergents facilitate rhodanese refolding by interacting with exposed hydrophobic surfaces of folding intermediates and thereby prevent aggregation (Tandon, S., and Horowitz, P. (1986) J. Biol. Chem. 261, 15615-15618). The chaperonin proteins appear to play a similar role in as much as they can replace the detergents. Consistent with this view, chaperonin 60, but not chaperonin 10, binds 2-3 molecules of the hydrophobic fluorescent reporter, 1,1'-bi(4-anilino)naphthalene-S,5'-disulfonic acid, indicating the presence of hydrophobic surfaces on chaperonin 60. The number of bound probe molecules is reduced to 1-2 molecules when chaperonin 10 and MgATP are added. The results support a model in which chaperonins facilitate folding, at least in part, by interacting with partly folded intermediates, thus preventing the interactions of hydrophobic surfaces that lead to aggregation.  相似文献   

18.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (K5) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate-similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reserved by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

19.
For the first time, the enzyme rhodanese had been refolded after thermal denaturation. This was previously not possible because of the strong tendency for the soluble enzyme to aggregate at temperatures above 37 degrees C. The present work used rhodanese that was covalently coupled to a solid support under conditions that were found to preserve enzyme activity. Rhodanese was immobilized using an N-hydroxymalonimidyl derivative of Sepharose containing a 6-carbon spacer. The number of immobilized competent active sites was measured by using [35S]SO3(2-) to form an active site persulfide that is the obligatory catalytic intermediate. Soluble enzyme was irreversibly inactivated in 10 min at 52 degrees C. The immobilized enzyme regained at least 30% of its original activity even after boiling for 20 min. The immobilized enzyme had a Km and Vmax that were each approximately 3 times higher than the corresponding values for the native enzyme. After preincubation at high temperatures, progress curves for the immobilized enzyme showed induction periods of up to 5 min before attaining apparently linear steady states. The pH dependence of the activity was the same for both the soluble and the immobilized enzyme. These results indicate significant stabilization of rhodanese after immobilization, and instabilities caused by adventitious solution components are not the sole reasons for irreversibility of thermal denaturation seen with the soluble enzyme. The results are consistent with models for rhodanese that invoke protein association as a major cause of inactivation of the enzyme. Furthermore, the induction period in the progress curves is consistent with studies which show that rhodanese refolding proceeds through intermediate states.  相似文献   

20.
Mutation of all nonessential cysteine residues in rhodanese turns the enzyme into a form (C3S) that is fully active but less stable than wild type (WT). This less stable mutant allowed testing of two hypotheses; (a) the two domains of rhodanese are differentially stable, and (b) the chaperonin GroEL can bind better to less stable proteins. Reduced temperatures during expression and purification were required to limit inclusion bodies and obtain usable quantities of soluble C3S. C3S and WT have the same secondary structures by circular dichroism. C3S, in the absence of the substrate thiosulfate, is cleaved by trypsin to give a stable 21-kDa species. With thiosulfate, C3S is resistant to proteolysis. In contrast, wild type rhodanese is not proteolyzed significantly under any of the experimental conditions used here. Mass spectrometric analysis of bands from SDS gels of digested C3S indicated that the C-terminal domain of C3S was preferentially digested. Active C3S can exist in a state(s) recognized by GroEL, and it displays additional accessibility of tryptophans to acrylamide quenching. Unlike WT, the sulfur-loaded mutant form (C3S-ES) shows slow inactivation in the presence of GroEL. Both WT and C3S lacking transferred sulfur (WT-E and C3S-E) become inactivated. Inactivation is not due to irreversible covalent modification, since GroEL can reactivate both C3S-E and WT-E in the presence of GroES and ATP. C3S-E can be reactivated to 100%, the highest reactivation observed for any form of rhodanese. These results suggest that inactivation of C3S-E or WT-E is due to formation of an altered, labile conformation accessible from the native state. This conformation cannot as easily be achieved in the presence of the substrate, thiosulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号