首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Lysosomes and oxidative stress in aging and apoptosis   总被引:5,自引:0,他引:5  
The lysosomal compartment consists of numerous acidic vesicles (pH approximately 4-5) that constantly fuse and divide. It receives a large number of hydrolases from the trans-Golgi network, while their substrates arrive from both the cell's outside (heterophagy) and inside (autophagy). Many macromolecules under degradation inside lysosomes contain iron that, when released in labile form, makes lysosomes sensitive to oxidative stress. The magnitude of generated lysosomal destabilization determines if reparative autophagy, apoptosis, or necrosis will follow. Apart from being an essential turnover process, autophagy is also a mechanism for cells to repair inflicted damage, and to survive temporary starvation. The inevitable diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow oxidative formation of lipofuscin in long-lived postmitotic cells, where it finally occupies a substantial part of the volume of the lysosomal compartment. This seems to result in a misdirection of lysosomal enzymes away from autophagosomes, resulting in depressed autophagy and the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. This scenario might put aging into the category of autophagy disorders.  相似文献   

2.
As an outcome of normal autophagic degradation of ferruginous materials, such as ferritin and mitochondrial metalloproteins, the lysosomal compartment is rich in labile iron and, therefore, sensitive to the mild oxidative stress that cells naturally experience because of their constant production of hydrogen peroxide. Diffusion of hydrogen peroxide into the lysosomes results in Fenton-type reactions with the formation of hydroxyl radicals and ensuing peroxidation of lysosomal contents with formation of lipofuscin that amasses in long-lived postmitotic cells. Lipofuscin is a non-degradable polymeric substance that forms at a rate that is inversely related to the average lifespan across species and is built up of aldehyde-linked protein residues. The normal accumulation of lipofuscin in lysosomes seems to reduce autophagic capacity of senescent postmitotic cells--probably because lipofuscin-loaded lysosomes continue to receive newly formed lysosomal enzymes, which results in lack of such enzymes for autophagy. The result is an insufficient and declining rate of autophagic turnover of worn-out and damaged cellular components that consequently accumulate in a way that upsets normal metabolism. In the event of a more substantial oxidative stress, enhanced formation of hydroxyl radicals within lysosomes jeopardizes the membrane stability of particularly iron-rich lysosomes, specifically of autophagolysosomes that have recently participated in the degradation of iron-rich materials. For some time, the rupture of a limited number of lysosomes has been recognized as an early upstream event in many cases of apoptosis, particularly oxidative stress-induced apoptosis, while necrosis results from a major lysosomal break. Consequently, the regulation of the lysosomal content of redox-active iron seems to be essential for the survival of cells both in the short- and the long-term.  相似文献   

3.
Aging (senescence) is characterized by a progressive accumulation of macromolecular damage, supposedly due to a continuous minor oxidative stress associated with mitochondrial respiration. Aging mainly affects long-lived postmitotic cells, such as neurons and cardiac myocytes, which neither divide and dilute damaged structures, nor are replaced by newly differentiated cells. Because of inherent imperfect lysosomal degradation (autophagy) and other self-repair mechanisms, damaged structures (biological "garbage") progressively accumulate within such cells, both extra- and intralysosomally. Defective mitochondria and aggregated proteins are the most typical forms of extralysosomal "garbage", while lipofuscin that forms due to iron-catalyzed oxidation of autophagocytosed or heterophagocytosed material, represents intralysosomal "garbage". Based on findings that autophagy is diminished in lipofuscin-loaded cells and that cellular lipofuscin content positively correlates with oxidative stress and mitochondrial damage, we have proposed the mitochondrial-lysosomal axis theory of aging, according to which mitochondrial turnover progressively declines with age, resulting in decreased ATP production and increased oxidative damage. Due to autophagy of ferruginous material, lysosomes contain a pool of redox-active iron, which makes these organelles particularly susceptible to oxidative damage. Oxidant-mediated destabilization of lysosomal membranes releases hydrolytic enzymes to the cytosol, eventuating in cell death (either apoptotic or necrotic depending on the magnitude of the insult), while chelation of the intralysosomal pool of redox-active iron prevents these effects. In relation to the onset of oxidant-induced apoptosis, but after the initiating lysosomal rupture, cytochrome c is released from mitochondria and caspases are activated. Mitochondrial damage follows the release of lysosomal hydrolases, which may act either directly or indirectly, through activation of phospholipases or pro-apoptotic proteins such as Bid. Additional lysosomal rupture seems to be a consequence of a transient oxidative stress of mitochondrial origin that follows the attack by lysosomal hydrolases and/or phospholipases, creating an amplifying loop system.  相似文献   

4.
Autophagy (which includes macro-, micro-, and chaperone-mediated autophagy) is an important biological mechanism for degradation of damaged/obsolete macromolecules and organelles. Ageing non-dividing cells, however, progressively accumulate oxidised proteins, defective organelles and intralysosomal lipofuscin inclusions, suggesting inherent insufficiency of autophagy. To learn more about the role of macroautophagy in the turnover of organelles and lipofuscin formation, we inhibited autophagic sequestration with 3-methyladenine (3 MA) in growth-arrested human fibroblasts, a classical model of cellular ageing. Such treatment resulted in a dramatic accumulation of altered lysosomes, displaying lipofuscin-like autofluorescence, as well as in a moderate increase of mitochondria with lowered membrane potential. The size of the late endosomal compartment appeared not to be significantly altered following 3 MA exposure. The accumulation of lipofuscin-like material was enhanced when 3 MA administration was combined with hyperoxia. The findings suggest that macroautophagy is essential for normal turnover of lysosomes. This notion is supported by reports in the literature of lysosomal membrane proteins inside lysosomes and/or late endosomes, as well as lysosomes with active hydrolases within autophagosomes following vinblastine-induced block of fusion between lysosomes and autophagosomes. The data also suggest that specific components of lysosomes, such as membranes and proteins, may be direct sources of lipofuscin.  相似文献   

5.
Cellular manifestations of aging are most pronounced in postmitotic cells, such as neurons and cardiac myocytes. Alterations of these cells, which are responsible for essential functions of brain and heart, are particularly important contributors to the overall aging process. Mitochondria and lysosomes of postmitotic cells suffer the most remarkable age-related alterations of all cellular organelles. Many mitochondria undergo enlargement and structural disorganization, while lysosomes, which are normally responsible for mitochondrial turnover, gradually accumulate an undegradable, polymeric, autofluorescent material called lipofuscin, or age pigment. We believe that these changes occur not only due to continuous oxidative stress (causing oxidation of mitochondrial constituents and autophagocytosed material), but also because of the inherent inability of cells to completely remove oxidatively damaged structures (biological 'garbage'). A possible factor limiting the effectiveness of mitochondial turnover is the enlargement of mitochondria which may reflect their impaired fission. Non-autophagocytosed mitochondria undergo further oxidative damage, resulting in decreasing energy production and increasing generation of reactive oxygen species. Damaged, enlarged and functionally disabled mitochondria gradually displace normal ones, which cannot replicate indefinitely because of limited cell volume. Although lipofuscin-loaded lysosomes continue to receive newly synthesized lysosomal enzymes, the pigment is undegradable. Therefore, advanced lipofuscin accumulation may greatly diminish lysosomal degradative capacity by preventing lysosomal enzymes from targeting to functional autophagosomes, further limiting mitochondrial recycling. This interrelated mitochondrial and lysosomal damage irreversibly leads to functional decay and death of postmitotic cells.  相似文献   

6.
The lysosomal compartment is the place for cellular degradation of endocytosed and autophagocytosed material and a center for normal turnover of organelles as well as most long-lived proteins. Lysosomes were long considered stable structures that broke and released their many hydrolytic enzymes only following necrotic cell death. It is now realized that lysosomes instead are quite vulnerable, although in a heterogeneous way. Their exposure to a number of events, such as oxidative stress, lysosomotropic detergents and aldhydes, as well as overexpression of the p53 protein, causes time-and-dose-dependent lysosomal rupture that is followed by apoptosis or necrosis. Partial lysosomal rupture has often been found to be an early upstream event in apoptosis, while necrosis results from fulminant lysosomal rupture. Consequently, factors influencing the stability of lysosomes, for instance their content of labile and redox-active iron, seem to be essential for the survival of cells.  相似文献   

7.
Autophagy is a lysosome-dependent degradative pathway that regulates the turnover of intracellular organelles, parasites, and long-lived proteins. Deregulation of autophagy results in a variety of pathological conditions, but little is known regarding the mechanisms that link normal cellular and pathological signals to the regulation of distinct stages in the autophagy pathway. Here we uncover a novel role for the Abl family kinases in the regulation of the late stages of autophagy. Inhibition, depletion, or knockout of the Abl family kinases, Abl and Arg, resulted in a dramatic reduction in the intracellular activities of the lysosomal glycosidases alpha-galactosidase, alpha-mannosidase and neuraminidase. Inhibition of Abl kinases also reduced the processing of the precursor forms of cathepsin D and cathepsin L to their mature, lysosomal forms, which coincided with the impaired turnover of long-lived cytosolic proteins and accumulation of autophagosomes. Furthermore, defective lysosomal degradation of long-lived proteins in the absence of Abl kinase signaling was accompanied by a perinuclear redistribution of lysosomes and increased glycosylation and stability of lysosome-associated membrane proteins, which are known to be substrates for lysosomal enzymes and play a role in regulating lysosome mobility. Our findings reveal a role for Abl kinases in the regulation of late-stage autophagy and have important implications for therapies that employ pharmacological inhibitors of the Abl kinases.  相似文献   

8.
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

9.
《Autophagy》2013,9(2):84-91
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D, and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

10.
11.
《Autophagy》2013,9(4):494-501
Normal retinal pigment epithelial (RPE) cells are postmitotic, long-lived and basically not replaced. Daily, they phagocytose substantial amounts of lipid-rich material (photoreceptor outer segment discs), and they do so in the most oxygenated part of the body – the retina. One would imagine that this state of affairs should be associated with a rapid formation of the age pigment lipofuscin (LF). However, LF accumulation is slow and reaches significant amounts only late in life when, if substantial, it often coincides with or causes age-related macular degeneration. LF formation occurs inside the lysosomal compartment as a result of iron-catalyzed peroxidation and polymerization. This process requires phagocytosed or autophagocytosed material under degradation, but also the presence of redox-active low mass iron and hydrogen peroxide. To gain some information on how RPE cells are able to evade LF formation, we investigated the response of immortalized human RPE cells (ARPE-19) to oxidative stress with/without the protection of a strong iron-chelator. The cells were found to be extremely resistant to hydrogen peroxide-induced lysosomal rupture and ensuing cell death. This marked resistance to oxidative stress was not explained by enhanced degradation of hydrogen peroxide, but to a certain extent further increased by the potent lipophilic iron chelator SIH. The cells were also able to survive, and even replicate, at high concentrations of SIH and showed a high degree of basal autophagic flux. We hypothesize that RPE cells have a highly developed capacity to keep lysosomal iron in a non-redox-active form, perhaps by pronounced autophagy of iron-binding proteins in combination with an ability to rapidly relocate low mass iron from the lysosomal compartment.  相似文献   

12.
Late endosomes and lysosomes (hereafter referred to as lysosomes) play an essential role in the turnover of cellular macromolecules and organelles. Their biochemical characterization has so far depended on purification methods based on either density gradient centrifugations or magnetic purification of iron-loaded organelles. Owing to dramatic changes in lysosomal density and stability associated with lysosomal diseases and cancer, these methods are not optimal for the comparison of normal and pathological lysosomes. Here, we introduce an efficient method for the purification of intact lysosomes by magnetic immunoprecipitation with antibodies against the vacuolar-type H(+) -ATPase. Quantitative MS-based proteomics analysis of the obtained lysosomal membranes identified 60 proteins, most of which have previously been associated with the lysosomal compartment. Interestingly, the lysosomal membrane proteome was significantly altered by the ectopic expression of an active form of the ErbB2 oncogene, which renders the cells highly metastatic. The furthermost ErbB2-associated changes included increased levels of CD63, S100A11 and ferritin heavy chain. Overall, our data introduce the antibody-based purification of lysosomes as a suitable method for the characterization of lysosomes from a variety of pathological conditions with altered lysosomal density and stability.  相似文献   

13.
Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX.  相似文献   

14.
Normal mitochondrial respiration is associated with a continuous production of superoxide and hydrogen peroxide, inevitably resulting in minor macromolecular damage. Damaged cellular components are not completely turned over by autophagy and other cellular repair systems, leading to a progressive age-related accumulation of biological “garbage” material, such as defective mitochondria, cytoplasmic protein aggregates and an intralysosomal undegradable material, lipofuscin. These changes primarily affect neurons, cardiac myocytes and other long-lived postmitotic cells that neither dilute this “garbage” by mitotic activity, nor are replaced by newly differentiated cells. Defective mitochondria are insufficient in ATP production and often generate increased amounts of reactive oxygen species, further enhancing oxidative stress. Lipofuscin-loaded lysosomes, in turn, poorly turn over mitochondria that gradually leads to the overload of long-lived postmitotic cells with “garbage” material, decreased adaptability and eventual cell death.  相似文献   

15.
Lysosomes are the key degradative compartments of the cell. Lysosomal cathepsins, which are enclosed in the lysosomes, help to maintain the homeostasis of the cell's metabolism by participating in the degradation of heterophagic and autophagic material. Following the targeted lysosomal membrane's destabilization, the cathepsins can be released into the cytosol and initiate the lysosomal pathway of apoptosis through the cleavage of Bid and the degradation of the anti-apoptotic Bcl-2 homologues. Cathepsins can also amplify the apoptotic signaling, when the lysosomal membranes are destabilized at a later stage of apoptosis, initiated by other stimuli. However, the functional integrity of the lysosomal compartment during apoptosis enables efficient autophagy, which can counteract apoptosis by providing the energy source and by disposing the damaged mitochondria, which generate the ROS. Impairing autophagy by disabling the lysosome function is being investigated as an adjuvant therapeutic approach to sensitize cells to apoptosis-inducing agents. Destabilization of the lysosomal membranes by the lysosomotropic detergents seems to be a promising strategy in this context as it would not only disable autophagy, but also promote apoptosis through the initiation of the lysosomal pathway. In contrast, the impaired autophagy and lysosomal degradation linked with the increased oxidative stress underlie degenerative changes in the aging neurons. This further suggests that lysosomes and lysosomal cathepsins have a dual role in cell death. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

16.
Our mini review summarizes what is known about the (bio)degradation of melanosomes. Unlike melanosome biogenesis where our knowledge enables us to explain it in molecular terms posing many interesting questions on the relation between lysosomes and melanosomes, melanosome degradation has remained 'terra incognita'. Observations at optical and ultrastructural levels describe the disintegration of melanosomes in the lysosomal compartment (in auto- and heterophagosomes). Histochemical studies suggest the participation of acid hydrolases in the process of melanosome degradation. Biochemical data confirm the ability of lysosomal hydrolases to degrade melanosome constituents except the melanin moiety. The similarity of melanin structure to that of polycyclic aromatic hydrocarbons suggests that melanin should be sensitive mainly, if not exclusively, to oxidative breakdown. In vitro melanin can indeed be decomposed by an oxidative attack and the degradation is accompanied by fluorescence and decreasing absorbance. From enzymes engaged in the biotransformation of polycyclic hydrocarbons only phagosomal NADPH oxidase meets the criteria (particularly as for compartmental and catalytic properties) to be involved in melanin biodegradation. The in vivo biodegradation of melanin has so far been clearly demonstrated in Aspergillus and fungi melanins.  相似文献   

17.
The prevailing opinion on lysosomal endurance is that, as long as the cells are still alive, these organelles are generally quite stable and, thus, do not induce cell damage by leaking their numerous powerful hydrolytic enzymes to the cytosol. We suggest that this opinion is basically wrong and consider that many lysosomes are quite vulnerable, especially to oxidative stress. Moreover, we suggest that cellular degeneration, including apoptosis as well as necrosis, follows upon lysosomal disruption. We have found differing stability of lysosomal membranes to oxidative stress, not only among different cell types, but also between cells of the same type and between lysosomes of individual cells. We suggest that cellular resistance to oxidative stress is mainly a function of three parameters: (i) the capacity to degrade hydrogen peroxide before it reaches, and may diffuse into, the acidic vacuolar compartment; (ii) the resistance to reactive oxygen species of lysosomal membranes; and (iii) the intralysosomal amounts of redox-active, low molecular weight iron. Iron-catalysed intralysosomal reactions, if pronounced enough, result in peroxidation and destabilization of the lysosomal membrane. Owing to differences in the cellular synthesis of hydrogen peroxide-degrading enzymes, degree of autophagocytotic degradation of iron-containing metalloproteins, lysosomal localization within the cytoplasm and intralysosomal iron chelation, the above three parameters may vary between both different and similar cells and between lysosomes of individual cells as well, explaining their observed variability with respect to resistance against oxidative stress  相似文献   

18.
Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starvation. WASH is required for efficient phagosomal proteolysis, and proteomic analysis demonstrates that this is due to reduced delivery of lysosomal hydrolases. Both protease and lipase delivery are disrupted, and lipid catabolism is also perturbed. Starvation-induced autophagy therefore leads to phospholipid accumulation within WASH-null lysosomes. This causes the formation of multilamellar bodies typical of many lysosomal storage diseases. Mechanistically, we show that, in cells lacking WASH, cathepsin D becomes trapped in a late endosomal compartment, unable to be recycled to nascent phagosomes and autophagosomes. WASH is therefore required for the maturation of lysosomes to a stage at which hydrolases can be retrieved and reused.  相似文献   

19.
Lysosomes are dynamic organelles, which can fuse with a variety of targets and undergo constant regeneration. They can move along microtubules in a retrograde and anterograde fashion by using motor proteins, kinesin and dynein, being main players in extracellular secretion, intracellular components degradation and recycling. Moreover, lysosomes interact with other intracellular organelles to regulate their turnover, such as ER, mitochondria and peroxisomes.The correct localization of lysosomes is relevant in several physiological processes, including appropriate antigen presentation, neurotransmission and receptors modulation in neuronal synapsis, whereas hepatic lysosomes and autophagy are master regulators of nutrient homeostasis.Alterations in lysosome function due to mutation of genes encoding lysosomal proteins, soluble hydrolases as well as membrane proteins, lead to lysosomal storage diseases (LSDs). Lysosomes containing undegraded substrates are finally stacked and therefore miss positioned inside the cell, leading to lysosomal dysfunction, which impacts a wide range of cellular functions.  相似文献   

20.
Relations between lysosomes and yolk platelets of amphibian eggs have been suggested. This work demonstrates the presence of acid hydrolases in oocytes induced to ovulate in vitro. About 40% of the acid hydrolases are found in a sedimentable fraction, and, in accordance with the lysosomal concept, they display structural latency. Biochemical data did not indicate any association between lysosomal enzymes and yolk platelets. The mechanism of yolk resorption is discussed and it is suggested that the fusion of lysosomes and yolk platelets might be one of the mechanisms involved in yolk digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号