首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cobalt(II) complexes with 6-(2-hydroxybenzylamino)purine (HL1), 6-(2-methoxybenzylamino)purine (HL2), 6-(3-methoxybenzylamino)purine (HL3) and 6-(4-methoxybenzylamino)purine (HL4) of the composition [Co(L1)Cl(H2O)2].H2O (1), [Co(L2)Cl(H2O)2] (2), [Co(L3)2(H2O)2].2H2O (3), [Co(L4)2(H2O)2].2H2O (4) have been synthesized. The compounds have been characterized by elemental analysis, FT-IR, ES+ MS (electrospray mass spectra in the positive ion mode) and electronic spectroscopies, magnetic and conductivity data as tetrahedral high-spin cobalt(II) complexes. The thermal stability of the complexes has also been studied. The cytotoxicity of the complexes (1-4) was determined by a Calcein acetoxymethyl (AM) assay. Human malignant melanoma (G361), human chronic myelogenous erythroleukemia (K562), human osteogenic sarcoma (HOS) and human breast adenocarcinoma (MCF7) cell lines were used for the testing. The molecular structure of 6-(3-methoxybenzylamino)purinium chloride monohydrate, H2L3+.Cl.H2O, i.e. a protonated form of the free HL(3) ligand, has been determined by a single crystal X-ray analysis. The geometry optimisation and infrared frequencies calculations of HL1, HL2, and H2L3+ and H2L4+ were performed using density-functional theory (DFT) calculations at the B3LYP/6-31G* level of the theory. The geometry of complex (1) was optimised at the same level of the theory.  相似文献   

2.
The new square-planar Pt(II) and Pd(II) complexes with cytokinin-derived compounds Bohemine and Olomoucine, having the formulae [Pt(BohH(+))Cl(3)].H(2)O (1), [Pt(Boh)(2)Cl(2)].3H(2)O (2), [Pt(Boh-H)Cl(H(2)O)(2)].H(2)O (3), [Pt(OloH(+))Cl(3)].H(2)O (4), [Pd(BohH(+))Cl(3)].H(2)O (5), [Pd(Boh)Cl(2)(H(2)O)] (6), [Pd(Boh-H)Cl(H(2)O)].EtOH (7) and [Pd(OloH(+))Cl(3)].H(2)O (8), where Boh=6-(benzylamino)-2-[(3-(hydroxypropyl)amino]-9-isopropylpurine and Olo=6-(benzylamino)-2-[(2-(hydroxyethyl)amino]-9-methylpurine, have been synthesized. The complexes have been characterized by elemental analyses, IR, FAB+ mass, 1H, 13C and 195Pt NMR spectra, and conductivity data. The molecular structure of the complex [Pt(BohH(+)-N7)Cl(3)].9/5H(2)O has been determined by an X-ray diffraction study. Results from physical studies show that both Bohemine and Olomoucine are coordinated to transition metals through the N(7) atom of purine ring in all the complexes. The prepared compounds have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines and IC(50) values have been also determined for all the complexes. IC(50) values estimated for the Pt(II)-Bohemine complexes (2.1-16 microM) allow us to conclude that they could find utilization in antineoplastic therapy. Thus, from a pharmacological point of view, Pt(II) complexes of Bohemine may represent compounds for a new class of antitumor drugs.  相似文献   

3.
A series of Au, Ru, and Cu complexes of metronidazole (= [1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole; 1) were prepared as highly potent anti-amoebic drugs. The complexes [Au(PPh3)(1)]PF6 (2), [Ru(1)2(Cl)2(H2O)2] (3), and [Cu(1)2(mu-Cl)(H2O)]2Cl2 (4) were readily synthesized from [Au(PPh3)Cl], RuCl3 x 3 H2O, and CuCl2 x 2 H2O, respectively. All complexes were thoroughly characterized by IR, UV/VIS, 1H-NMR, FAB-MS, elemental and thermogravimetric analyses, and, in the case of 4, also by X-ray crystallography (Fig. 1). All complexes were evaluated in vitro as growth inhibitors of Entamoeba histolytica (HM1:IMSS strain). Their IC50 values were in the range of 0.10-0.51 microM (Table 2), which makes these drugs, especially the Cu(II) complex 4, considerably more potent than uncomplexed metronidazole (1; IC50 = 1.81 microM), the current standard drug for the worldwide treatment of amoebiasis.  相似文献   

4.
A dimeric copper complex of the unsubstituted pyridoxal thiosemicarbazone (H(2)L), [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O, previously tested on Friend murine cell lines has been recently resynthesized to evaluate its behavior on different murine and human leukemic cell lines and has been compared, in vitro and in vivo, with its monomeric counterpart [Cu(H(2)L)(OH(2))Cl]Cl. On TS/A murine adenocarcinoma cell line in vitro, both compounds significantly inhibit cell proliferation at micromolar concentrations, although the dimeric compound is more active. Despite this cytotoxicity they lack in vivo activity on TLX5 lymphoma. The unsubstituted dimeric [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O induces apoptosis on CEM and U937 human cell lines, with IC(50) concentrations of 1.2 x 10(-5) and 6.7 x 10(-6) M, respectively, but it is inactive on K562. Moreover, it alters significantly the cell cycle of U937 and CEM lines and decreases the telomerase activity of U937. To verify if other dimeric copper complexes show relevant biological activity new complexes with N-substituted pyridoxal thiosemicarbazones have been synthesized and characterized using spectroscopic techniques. Three of them, namely [Cu(Me(2)-HL)Cl](2).6H(2)O (Me(2)-H(2)L=pyridoxal N1,N1-dimethylthiosemicarbazone) (1), [Cu(MeMe-HL)Cl](2)Cl(2).4H(2)O (MeMe-HL=pyridoxal N1,N2-dimethylthiosemicarbazone) (2), [Cu(Et-H(2)L)Cl](2)Cl(2).2H(2)O (Et-H(2)L=pyridoxal N1-ethylthiosemicarbazone) (3), were also characterized by X-ray diffractometry. These complexes are dimeric and all three present a square pyramidal coordinative geometry with the ligand showing an SNO tridentate behavior. Their biological activities have been tested in vitro on U937, CEM and K562 cell lines to ascertain their effectiveness in comparison to the corresponding unsubstituted complex [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O. Compound 1 shows weak proliferation inhibition on all three cell lines, but it does not induce apoptosis and it does not inhibit telomerase activity, compound 2 is not effective at low concentration and is toxic at higher doses; compound 3 inhibits CEM cell growth better than complex 1 but it does not exert any other biological effect.  相似文献   

5.
Several cisplatin analogues of ethylenediamine-derived ligands containing alcohol, carboxylic acid and acetate substituents have been prepared and characterised. Oxidation of some of these square planar platinum(II) complexes using aqueous hydrogen peroxide gave octahedral platinum(IV) complexes, containing trans hydroxo ligands. Acetylation of the hydroxo ligands was achieved by reaction with acetic anhydride, giving complexes which are analogues of the antitumour drug, JM-216. Oxidation of the complex [Pt(H2L4)Cl2], where H2L4 is ethylenediamine-N,N'-diacetic acid, with H2O2 gave the platinum(IV) complex [PtL4Cl2].H2O in which L4 is tetradentate as shown by a crystal and molecular structure. This complex was previously reported to be [Pt(HL4)(OH)Cl2] in which HL4 is tridentate. Several of the complexes were tested for antitumour activity against five human ovarian carcinoma cell lines. IC50 values range from 4.0 microM for cis,trans-PtCl2(OH)2(NH2CH2CH2NHCH2CH2OH) against the CH1 cell line to >25 microM indicating moderate to low activity relative to other platinum complexes.  相似文献   

6.
Mononuclear complexes of Cu(II), Ni(II), and Mn(II) with a new Schiff base ligand derived from indoline-2,3-dione and 2-hydroxybenzohydrazide, [Cu(II)(L)(2)], [Ni(II)(L)(2)], and [Mn(II)L.(AcO).2C(2)H(5)OH] [HL=(Z)-2-hydroxy-N'-(2-oxoindolin-3-ylidene)benzohydrazide], have been prepared. The complexes have been structurally characterized by X-ray crystallography. Among the three complexes, the Cu(II) complex had the novel highest antitumor activity.  相似文献   

7.
Biological studies on [Fe(L)2](NO3).0.5H2O (1), [Fe(L)2][PF6] (2), [Co(L)2](NCS) (3), [Ni(HL)2]Cl2.3H2O (4) and Cu(L)(NO3) (5), where HL=C7H8N4S, pyridine-2-carbaldehyde thiosemicarbazone, have been carried out. The crystal structure of compound 3 has been solved. It consists of discrete monomeric cationic entities containing cobalt(III) ions in a distorted octahedral environment. The metal ion is bonded to one sulfur and two nitrogen atoms of each thiosemicarbazone molecule. The thiocyanate molecules act as counterions. The copper(II) and iron(III) complexes react with reduced glutathione and 2-mercaptoethanol. The reaction of compound 1 with the above thiols causes the reduction of the metal ion and bis(thiosemicarbazonato)iron(II) species are obtained. The redox activity, and in particular the reaction with cell thiols, seems to be related to the cytotoxicity of these complexes against Friend erithroleukemia cells and melanoma B16F10 cells.  相似文献   

8.
Copper(II) ternary complexes based on the novel benzothiazole- N-sulfonamides, HL1 ( N-2-(4-methylbenzothiazole)benzenesulfonamide) and HL2 ( N-2-(6-nitrobenzothiazole)naphthalenesulfonamide) ligands, and pyridine have been synthesized and characterized. Complexes [Cu(L1)(2)(py)(2)] (1). and [Cu(L2)(2)(py)(2)] (2). were chemically characterized and their structures determined by means of single crystal X-ray analysis. In both compounds the Cu(II) ion is coordinated to four N atoms in a nearly square planar arrangement. The Cu-N bond distances are similar to those of Cu(2)Zn(2)SOD. The SOD mimetic activity of the complexes was determined both in vitro and in vivo. For determining the SOD-like activity of the complexes in vivo, we have developed a new method based on the complexes' protective effect on a delta sod1mutant of Saccharomyces cerevisiae against free radicals generated by hydrogen peroxide and menadione as well as free radicals produced in the cellular respiration process. The results have shown that complex 1 presents a protective action against oxidative stress induced by menadione or H(2)O(2) and that both complexes 1 and 2 protect against free radicals generated in cellular respiration.  相似文献   

9.
The preparation of N-, S- and O-donor ligand adducts with CuX+(HX=6-methyl-2-formylpyridinethiosemicarbazone (6HL); 2-formylpyridine-2-methylthiosemicarbazone (2′L); 2-formylpyridine-4′-methylthiosemicarbazone (4′HL)) is described. The N-donors, 2,2′-bipyridyl (bipy), 4-dimethylaminopyridine (dmap) give the complexes [Cu(6L)(bipy)]PF6, [Cu(6L)(bipy)]Cl·5H2O, [Cu(4′L)(bipy)]PF6, [Cu(6L)(dmap)2]PF6·2.5 H2O and [Cu(4′L)(dmap)2]PF6·H2O which have been characterized by physical and spectroscopic techniques. Pentafluorothiophenolate (pftp) gives S-donor complexes [CuX(pftp)] (X=6L and 4′L) and thiolato co-ordination is proposed on the basis of spectroscopic evidence. Paratritylphenolate (ptp) and HPO2−4 give O-donor complexes [Cu(6L)(ptp)], [Cu(4′L)(ptp)], [{Cu(6L)}2HPO4]·4H2O, and [{Cu(4L)}2HPO4]·5H2O which have been characterized by physical and spectroscopic techniques, as have the precursor complexes [Cu(6L)(CH3COO)]·H2O, [Cu(4′L)(CH3COO)], Cu(6HL)(CF3COO)](CF3COO)·0.5H2O, [Cu(4′HL)(CF3COO)](CF3COO), [Cu(2′L)Cl2] and [Cu(2′L)(NO3)2]. Protonation constants for the ligands and some of their complexes have been determined. 2-Formylpyridinethiosemicarbazone (HL) complexes of silver, gold, zinc, mercury, cadmium and lead are also discussed. Cytotoxicity against the human tumor cell line HCT-8 and antiviral data for selected compounds are presented.  相似文献   

10.
A series of square-planar Pd(II) complexes of the composition cis-[Pd(L(n))(2)Cl(2)] {L(1)=2-chloro-6-benzylamino-9-isopropylpurine (1), L(2)=2-chloro-6-[(4-methoxybenzyl)amino]-9-isopropylpurine (2), L(3)=2-chloro-6-[(2-methoxybenzyl)amino]-9-isopropylpurine (3) and 2-[(chloropropyl)amino]-6-benzylamino-9-isopropylpurine (6)} has been synthesized by the reaction of PdCl(2) with L(n) in a 1:2 molar ratio. In contrast, the same reaction followed by recrystallization of the product from N,N'-dimethylformamide (DMF) leads to trans-[Pd(L(n))(2)Cl(2)] x nDMF {L(3), n=0 (4), n=1(4( *)DMF); L(4)=2-chloro-6-[(2,3-dimethoxybenzyl)-amino]-9-isopropylpurine, n=0 (5), n=1.5 (5( *)DMF). The compounds have been characterized by elemental analyses, conductivity measurements, electrospray mass spectra in the positive ion mode (ES+MS), FTIR, (1)H and (13)C NMR spectra, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the complexes 2 and 6 have been also investigated by (15)N NMR spectroscopy. The molecular structures of L(5), {(H(2+)L(5))(Cl(-))(2)} x H(2)O, i.e. the protonated form of L(5), trans-[Pd(L(3))(2)Cl(2)] (4) and trans-[Pd(L(4))(2)Cl(2)] (5) have been determined by single crystal X-ray analysis. NMR data and X-ray structures revealed that the organic molecules are coordinated to Pd via N7 atom of a purine moiety. All the complexes and the corresponding ligands have been tested in vitro for their cytotoxicity against four human cancer cell lines: breast adenocarcinoma (MCF7), malignant melanoma (G361), chronic myelogenous leukaemia (K562) and osteogenic sarcoma (HOS). Promising in vitro cytotoxic effect has been found for cis-[Pd(L(2))(2)Cl(2)] (2), having the IC(50) values of 12, 10, 25, and 14 microM against MCF7, G361, K562, and HOS, respectively, and for trans-[Pd(L(3))(2)Cl(2)].DMF (4) with the IC(50) value of 15 microM against G361.  相似文献   

11.
Preparations of copper(II) and palladium(II) complexes of 4-amino-5-methylthio-3-(2-pyridyl)-1,2,4-triazole (L(1)) and the copper(II) complex of 1,4-dihydro-4-amino-3-(2-pyridyl)-5-thioxo-1,2,4-triazole (HL) are described. These complexes have been characterized by means of spectroscopy and microanalysis. Molecular structures of HL (1), [CuCl(2)(H(2)L)]Cl.2H(2)O (2a), cis-[CuCl(2)(L(1))] (3), and cis-[PdCl(2)(L(1))] (4) have been determined by single-crystal X-ray diffraction. The HL ligand acts as a N,S bidentate through the thioxo moiety and the exo-amino group whilst the ligand L(1) forms N,N coordination complexes through the pyridine and triazole nitrogen atoms. Speciation in solution of the systems Cu/HL and Cu/L(1) have been determined by means of potentiometry and spectrophotometry as well as for the Cu/L(1)/A (HA=glycine) system in order to determine species present at physiological pH. Antiproliferative activity of these complexes and their ligands was evaluated, using the AlamarBlue Assay, on normal human fibroblasts (HF) and human fibrosarcoma tumor (HT1080) cells. The copper compounds cis-[CuCl(2)(H(2)L)]Cl and cis-[CuCl(2)(L(1))] exerted significant antiproliferative activity of both normal and neoplastic cells; although dose-response experiments revealed that the HT1080 cell line was more sensitive to the tested drugs than normal fibroblasts.  相似文献   

12.
1,2-Bis-[2-(5-H/Me/Cl/NO2)-1H-benzimidazolyl]-1,2-ethanediols (L1-L4), 1,4-Bis-[2-(5-H/Me/Cl)-1H-benzimidazolyl]-1,2,3,4-butanetetraols (L5-L7) and their complexes with FeCl3, CuCl2, and AgNO3 were synthesized; antibacterial activity of the compounds was determined toward Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Proteus mirabilis, and antifungal activity against Candida albicans. The AgI complexes have considerable activity toward the microorganisms. Some AgI complexes show higher activity toward S. epidermidis than AgNO3 and cefuroxime. Cu(L3)Cl2 and Fe(L3)Cl3 show an antifungal effect on C. albicans but L3 itself has no activity.  相似文献   

13.
The synthesis of a new tetrapyridyl ligand, bis[di-1,1-(2-pyridyl)ethyl]amine (BDPEA), is described. Complexation of this ligand with manganese(II), iron(III) or copper(II) chlorides afforded mononuclear complexes: Mn(BDPEA)Cl2 (1) [Fe (BDPEA)Cl2]Cl (2) and [Cu(BDPEA)Cl]Cl (3). In all cases, BDPEA is coordinated to the metal center by three pyridine nitrogen atoms and the secondary amine. The geometrical environments around the metals in Mn(BDPEA)Cl2 and [Fe(BDPEA)Cl2]Cl are best described as distorted octahedrals and in [Cu (BDPEA)Cl]Cl as a slightly distorted square pyramid. The DNA cleavage activities of manganese(II), iron (III) or copper(II) complexes of both BDPEA and another tetrapyridyl ligand, bis[di(2-pyridyl) methyl]amine (BDPMA), in the presence of an oxidant (H2O2) or a reducing agent (ascorbate) with air, are reported. The iron(III) complexes exhibited significantly enhanced efficiencies, compared to copper(II) complexes. [Fe(BDPEA)Cl2]Cl is found to be the most active DNA cleaver, in agreement with a better stability of BDPEA in oxidizing conditions.  相似文献   

14.
Complexes of Co(II), Ni(lI), Cu(II), Zn(II) and Pt(II) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H) were prepared and characterized by elemental analyses, conductance measurement and spectral studies. On the basis of these studies a distorted octahedral structure for [Co(1-iqtsc)2]·2H2O, a distorted trigonal-bipyramidal structure for [Ni- (1-iqtsc-H)Cl2], [Cu(1-iqtsc-H)Cl2] and [Zn(1-iqtsc- H)(OAc)2]·H2O and a square-planar structure for [Pt(1-iqtsc)Cl] are suggested. All these metal(II) complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. Except for Pt(Il), the complexes were found to possess significant activity; the Ni(II) complex showed a T/C value of 161 at the optimum dosage.  相似文献   

15.
The Pt(II) and Pd(II) complexes of the types cis-[Pt(L(1))(2)Cl(2)].H(2)O (1), cis-[Pt(L(2))(2)Cl(2)].3H(2)O (2), trans-[Pd(L(1))(2)Cl(2)].H(2)O (3), trans-[Pd(L(2))(2)Cl(2)].H(2)O (4), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) (L(1)-L(4)=cyclin-dependent kinase inhibitors derived from 6-benzylamino-9-isopropylpurine) have been prepared and characterized. The complexes have been studied by elemental analyses, conductivity measurements, ES+ MS, FT-IR, (1)H, (13)C and (195)Pt NMR spectra, differential scanning calorimetry and thermogravimetric analysis. The molecular structures of L(1), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) have been determined by single crystal X-ray analysis. The complexes have been tested in vitro due to their presumable anticancer activity against the following human cancer cell lines: K-562, MCF7, G-361 and HOS. Satisfying results were obtained for the complex 1 with IC(50) values of 6 microM acquired against G-361 as well as against HOS cell lines. The lowest values of IC(50) were achieved for the complexes 3 and 4 against MCF 7 cell line with IC(50) 3 microM(for 3) and also 3 microM (for 4).  相似文献   

16.
Two new complexes [Cu(Imz)(4)Cl(2)][Cu(Imz)(4)Cl] (2)(2-OH-Hip)(2) (1) and [Co(2-OH-Hip)(Imz)(3)].H(2)O (2) (with Imz=Imidazol and 2-OH-Hip=2-hydroxyhippuric acid) were prepared and characterized. The molecular structures and the solution and solid state behavior of the complexes were investigated. Complex 1 crystallizes in the monoclinic space group P2(1)/c with a=16.880(1), b=8.046(1), c=24.683(1) A, beta=107.88(1) degrees, and Z=2, while complex 2 crystallizes in the orthorhombic space group Pbca with a=11.712(2), b=15.741(4), c=22.254(4) A, and Z=8. The [Cu(Imz)(4)Cl(2)][Cu(Imz)(4)Cl](2)(2-OH-Hip)(2) solid consists in two distinct monomeric Cu(II) complexes: one of them is neutral octahedral [Cu(Imz)(4)Cl(2)] and the other, charged square basis pyramida [Cu(Imz)(4)Cl](+). The 2-hydroxyhippuric acid, which here acts as a counter ion, is deprotonated at its carboxylic group. Cobalt(III) ion in [Co(2-OH-Hip)(Imz)(3)].H(2)O is at the center of an octahedral environment, coordinated to three Imidazol ligands and to a triply deprotonated 2-hydroxyhippuric acid molecule acting as a tridentate ligand. Aqueous solution equilibrium of the quaternary system Cu(2+)/2-OH-Hip/Imz/H(+) was studied by potentiometric titrations.  相似文献   

17.
The synthesis and characterisation of the following compounds derived from the biological relevant compound ethyl 5-methyl-4-imidazolecarboxylate (emizco) (1): [Cu(emizco)Cl2] (2), [Cu(emizco)2Cl2] (3), [Cu(emizco)2Br2] (4), [Cu(emizco)2(H2O)2](NO3)2 (5) and [Cu(emizco)4](NO3)2 (6), is presented. These compounds were characterised by IR and UV spectroscopic techniques, in addition the crystal structures of compounds 1-5 were determined. For complexes 2-5, emizco is coordinated as a bidentate ligand, through the oxygen atom of the carboxylate moiety and the nitrogen atom of the imidazolic ring. Different geometries are stabilised: compound 2 includes a pentacoordinated square pyramidal metal centre, while 3-5 are derived from octahedral geometry. Halide compounds 3 and 4 show a cis-octahedral arrangement, which is not very common on [CuN2O2X2] systems, while 5 stabilises the trans-octahedral isomer. Compound 6 displays a square planar geometry. Finally, hydrolysis of emizco to its corresponding carboxylic acid (mizco), allowed the preparation of another square planar complex 7, identified as [Cu(mizco)2] 0.5H2O. Solution studies of these compounds indicate that emizco is not substituted from the coordination sphere, remaining as a bidentate ligand. Halides are substituted by water molecules, changing from cis octahedral to the trans-[Cu(emizco)2(H2O)2]2+ isomer.  相似文献   

18.
Abstract

A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Sr(II), Hg(II), Ag(I), Tl(I) and UO2(II) complexes of 2-(2-(4-carboxyphenyl)guanidino)acetic acid ligand have been synthesised and characterised by elemental analyses, IR, UV-Vis spectra, mass spectra (ligand and its zinc(II) complex), 1H NMR spectra (ligand and its mercury(II) complex), magnetic moments, conductances, thermal analyses (DTA and TGA) and ESR measurements. The IR data show that, the ligand behaves as neutral tridentate, (2), [(H2 LL)3 CCu2 ((OAc)4 ((H2 OO)2 ] ], neutral bidentate, (3), [(H2LL)Cu(OAc)2]].1/2H2OO, (13), [(HL)2CCuCl2((H2OO)2]], (17), [(H2LL)Cu(OOSO2))(H2OO)J,dibasic hexadentate, (4), [(L) Ni4((OAc)6((H2OO)J.4H2OO, (5), [(L)Mn4(OAc)6(H2O)10]. 4H2O, (6), [(L)Co4(OAc)6(H2O)10] . 4H2O, monobasic bidentate, (7), [(HL)(UO2)(OAc)(H2O)3], (12), [(HL)2Cu], (15), [(HL)2Fe2(Cl4)(H2O)2]. 7H2O, (16), [(HL)2Cr2(Cl4)(H2O)2]. 7H2O, (21 ), [(H2L)Cd (OOSO2)(H2O)3]. 2H2O, monobasic tridentate, (8), [(L)2HHg2((OAc)2 (H2O)6].H2O, (9), [(L)2Zn2(OAc)2(H2O)6].H2O, (10), [(L) 2ZZn2((OAc)2((H2OO)6]].H2OO, (11), [(L)Tl4(OAc)3 (H2O)6], (18), [(HL)(OH)Cr2(SO4)2(H2O)5]. H2O, (19), [(HL)3Ag3NO3], or dibasic tridentate, (14), [(L) Sr(Cl)20 ((H2 OO)24 ]], (20), [(L)3 CCu (H2 OO)2 ] ]. Molar conductances in DMF indicate that, the complexes are non-electrolyte. The ESR spectra of Cu(II) complexes (2), (3) and (20) at room temperature show axial type symmetry with g// > g-> 2.00, indicating a d(x2-y2) ground state with significant covalent bond character in an octahedral or square planar geometry. However, Cu(II) complexes (12) and (13) show isotropic type, indicating square planar and octahedral structure. Complexes Mn(II) (5) and Co(II) (6) show broad signals in the low field region indicating spin exchange interaction take place between metal(II) ion. Hg(II) complex (9), Tl(I) complex (11), Cr(III) complex (16), Cu(II) complex (17) and Cd(II) complex (21) showed potential antiproliferative activity where they showed inhibitory effect on breast carcinoma (MCF-7 cell line) in comparing with the standard drug.  相似文献   

19.
Eight oxy-bridged dinuclear copper(II) complexes with catecholase-like sites, [Cu(L1)X]2 (HL1 = 1-diethylaminopropan-2-ol, X=N3- 1, NCO- 2, and NO2- 3), [Cu(L2)X]2 (HL2=N-ethylsalicylaldimine, X=NO3- 4, Cl- 5, N3- 6, NCS- 7), and [Cu(L3)]2(ClO4)2, 8 (HL3=N-(salicylidene)-N'-(2-pyridylaldene)propanediamine) have been prepared and characterized. The single crystal X-ray analysis show that the structures of complexes 6 and 8 are dimeric with two adjacent copper(II) atoms bridged by pairs of micro-oxy atoms from the L2 and L3 ligands. Magnetic susceptibility measurements in the temperature range 4-300 K indicate significant antiferromagnetic coupling for 4, 5 and 7 and ferromagnetic coupling for 6 between the copper(II) atoms. The catecholase activity of complexes for the oxidation of 3,5-di-tert-butylcatechol by O2 was studied and it was found that the complexes with the bond distance of Cu(II)...Cu(II) located at 2.9-3.0 A show higher catecholase activity.  相似文献   

20.
A series of copper(II) complexes of the type [Cu(L)]2+, where L = N,N'-dialkyl-1,10-phenanthroline-2,9-dimethanamine and R = methyl (L1), n-propyl (L2), isopropyl (L3), sec-butyl (L4), or tert-butyl (L5) group, have been synthesized. The interaction of the complexes with DNA has been studied by DNA fiber electron paramagnetic resonance (EPR) spectroscopy, emission, viscosity and electrochemical measurements and agarose gel electrophoresis. In the X-ray crystal structure of [Cu(HL2)Cl2]NO3, copper(II) is coordinated to two ring nitrogens and one of the two secondary amine nitrogens of the side chains and two chloride ions as well and the coordination geometry is best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). Electronic and EPR spectral studies reveal that all the complexes in aqueous solution around pH 7 possess CuN3O2 rather than CuN4O chromophore with one of the alkylamino side chain not involved in coordination. The structures of the complexes in aqueous solution around pH 7 change from distorted tetragonal to trigonal bipyramidal as the size of the alkyl group is increased. The observed changes in the physicochemical features of the complexes on binding to DNA suggest that the complexes, except [Cu(L5)]2+, bind to DNA with partial intercalation of the derivatised phen ring in between the DNA base pairs. Electrochemical studies reveal that the complexes prefer to bind to DNA in Cu(II) rather than Cu(I) oxidation state. Interestingly, [Cu(L5)]2+ shows the highest DNA cleavage activity among all the present copper(II) complexes suggesting that the bulky N-tert-butyl group plays an important role in modifying the coordination environment around the copper(II) center, the Cu(II)/Cu(I) redox potential and hence the formation of activated oxidant responsible for the cleavage. These results were compared with those for bis(1,10-phenanthroline)copper(II), [Cu(phen)2]2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号