首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dissociated neurons from the trigeminal (V) region of the metencephalic basal plate or the ventral spinal cord from chick embryos of Day 4 (V basal plate) or Day 5 (spinal cord) were cultured on a laminin substratum either in the presence of nerve growth factor (NGF) or in control medium. Assessment was made of neuronal survival, the amount of neurite elaborated, and the percentage of neurons initiating neurites. The presence of motoneurons was verified by retrograde labeling with the fluorescent dye diI. NGF was found to significantly increase the quantity of neuritic processes produced by the spinal cord dissociates at both 24 and 48 hr in vitro. The percentage of neurons initiating neuritic processes was significantly increased by NGF in the trigeminal population at 48 hr in vitro. Neuronal survival was not enhanced by NGF in either group. Both trigeminal and spinal cord neurons were also found to specifically bind 125I-NGF in culture. These results provide direct evidence for an influence of NGF on process formation of early embryonic motoneurons in culture.  相似文献   

3.
Excessive productions of inflammatory cytokines and free radicals are involved in spinal cord injury (SCI). Fibroblast growth factor 5 (FGF5) is associated with inflammatory response and oxidative damage, and we herein intend to determine its function in SCI. Lentivirus was instilled to overexpress or knockdown FGF5 expression in mice. Compound C or H89 2HCl were used to suppress AMP-activated protein kinase (AMPK) or protein kinase A (PKA), respectively. FGF5 level was significantly decreased during SCI. FGF5 overexpression mitigated, while FGF5 silence further facilitated inflammatory response, oxidative damage and SCI. Mechanically, FGF5 activated AMPK to attenuate SCI in a cAMP/PKA-dependent manner, while inhibiting AMPK or PKA with pharmacological methods significantly abolished the neuroprotective effects of FGF5 against SCI. More importantly, serum FGF5 level was decreased in SCI patients, and elevated serum FGF5 level often indicate better prognosis. Our study identifies FGF5 as an effective therapeutic and prognostic target for SCI.  相似文献   

4.
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.  相似文献   

5.
Nerve growth factor (NGF) is crucial for the development of sympathetic and small-diameter sensory neurons and for maintenance of their mature phenotype. Its role in generating neuronal pathophysiology is less well understood. After spinal cord injury, central processes of primary afferent fibers sprout into the dorsal horn, contributing to the development of autonomic dysfunctions and pain. NGF may promote these states as it stimulates sprouting of small-diameter afferent fibers and its concentration in the spinal cord increases after cord injury. The cells responsible for this increase must be identified to develop a strategy to prevent the afferent sprouting. Using immunocytochemistry, we identified cells containing NGF in spinal cord sections from intact rats and from rats 1 and 2 weeks after high thoracic cord transection. In intact rats, this neurotrophin was present in a few ramified microglia and in putative Schwann cells in the dorsal root. Within and close to the lesion of cord-injured rats, NGF was in many activated, ramified microglia, in a subset of astrocytes, and in small, round cells that were neither glia nor macrophages. NGF-immunoreactive putative Schwann cells were prevalent throughout the thoracolumbar cord in the dorsal roots and the dorsal root entry zones. Oligodendrocytes were never immunoreactive for this protein. Therapeutic strategies targeting spinal cord cells that produce NGF may prevent primary afferent sprouting and resulting clinical disorders after cord injury.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motoneurons. Recently, vascular endothelial growth factor (VEGF) has been identified as a neurotrophic factor and has been implicated in the mechanisms of pathogenesis of ALS and other neurological diseases. The potential neuroprotective effects of VEGF in a rat spinal cord organotypic culture were studied in a model of chronic glutamate excitotoxicity in which glutamate transporters are inhibited by threohydroxyaspartate (THA). Particularly, we focused on the effects of VEGF in the survival and vulnerability to excitotoxicity of spinal cord motoneurons. VEGF receptor-2 was present on spinal cord neurons, including motoneurons. Chronic (3 weeks) treatment with THA induced a significant loss of motoneurons that was inhibited by co-exposure to VEGF (50 ng/mL). VEGF activated the phosphatidylinositol 3-kinase/Akt (PI3-K/Akt) signal transduction pathway in the spinal cord cultures, and the effect on motoneuron survival was fully reversed by the specific PI3-K inhibitor, LY294002. VEGF also prevented the down-regulation of Bcl-2 and survivin, two proteins implicated in anti-apoptotic and/or anti-excitotoxic effects, after THA exposure. Together, these findings indicate that VEGF has neuroprotective effects in rat spinal cord against chronic glutamate excitotoxicity by activating the PI3-K/Akt signal transduction pathway and also reinforce the hypothesis of the potential therapeutic effects of VEGF in the prevention of motoneuron degeneration in human ALS.  相似文献   

7.
8.
Radiolabeled Nerve Growth Factor (NGF) was injected into either the mandibular process of the first visceral arch or the limb bud of chick embryos at Days 3.5-14 or Days 4-13 of incubation, respectively. Control embryos received injections of labeled cytochrome-C or labeled NGF plus an excess of unlabeled NGF. The tissues were then processed for autoradiography. The 125I-NGF was retrogradely transported by motoneurons of the trigeminal (V) motor nucleus on Days 3.5-8 of incubation, but not at later stages. Similar transport was seen in motoneurons of the spinal cord lateral motor column from Days 4-10 of incubation, but not at later stages. Sensory neurons of the V ganglion and of the dorsal root ganglia transported NGF at all injection ages. In no instance was the 125I-cytochrome-C transported by sensory or motor neurons. The injection of an excess of cold NGF along with labeled NGF resulted in no evidence of retrograde transport of the labeled NGF indicating that the transport was saturable. The time of transport by these brainstem and spinal cord motoneurons corresponds closely to the points during development at which they have been found to exhibit specific NGF binding. The present results, then, provide further evidence for a possible biological role for NGF during early developmental stages of these motoneuron populations.  相似文献   

9.
Small quantities of cord factor (trehalose-6,6'-dimycolates) can be readily and almost quantitatively permethylated in anhydrous diethyl ether/dimethylformamide mixtures with CH3I and NaH-oil dispersion in the presence of molecular sieve. Hydrolysis of the permethylated products from cord factor "Peurois" and 'P3-Aoyama-b' prove these to be 6,6'-dimycolates. Experiments with a 4-palmitoyl glucose suggest that acyl migration in this system may not occur.  相似文献   

10.
After spinal cord injury (SCI), disruption of blood–spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF‐induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF‐induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K‐Akt‐Rac1 signalling pathway.  相似文献   

11.
To investigate the possible role of vascular endothelial growth factor (VEGF) in the injured spinal cord, we analyzed the distribution and time course of the two tyrosine kinase receptors for VEGF, Flt-1 and Flk-1, in the rat spinal cord following contusion injury using a weight-drop impactor. The semi-quantitative RT-PCR analysis of Flt-1 and Flk-1 in the spinal cord showed slight upregulation of these receptors following spinal cord injury. Although mRNAs for Flt-1 and Flk-1 were constitutively expressed in neurons, vascular endothelial cells, and some astrocytes in laminectomy control rats, their upregulation was induced in association with microglia/macrophages and reactive astrocytes in the vicinity of the lesion within 1 day in rats with a contusion injury and persisted for at least 14 days. The spatiotemporal expression of Flt-1 in the contused spinal cord mirrored that of Flk-1 expression. In the early phase of spinal cord injury, upregulation of Flt-1 and Flk-1 mRNA occurred in microglia/macrophages that infiltrated the lesion. In addition, the expression of both receptors increased progressively in reactive astrocytes within the vicinity of the lesion, predominately in the white matter, and almost all reactive astrocytes coexpressed Flt-1 or Flk-1 and nestin. These results suggest that VEGF may be involved in the inflammatory response and the astroglial reaction to contusion injuries of the spinal cord via specific VEGF receptors.  相似文献   

12.
The present study localized corticotropin-releasing factor (CRF) receptors and studied the actions of CRF in the neonatal rat spinal cord preparation. Lumbar CRF receptors were present in highest concentrations in laminae I and II with progressively lower concentrations in lamina IX and intermediate and central zones respectively. CRF directly and indirectly depolarized lumbar motoneurons in a concentration-related manner and the putative receptor antagonist, alpha helical oCRF(9–41), partially blocked the depolarizing response to CRF. The electrophysiological responses to CRF and the distribution of receptors within the spinal cord suggest that CRF may play a physiological role in regulating spinal cord reflex function.  相似文献   

13.
Previously, we have demonstrated that intrathecally (i.t.) administered corticotropin-releasing factor (CRF) in mice produces stimulus-specific antinociception and modulation of morphine-induced antinociception by mechanisms involving spinal kappa opioid receptors. Recently, we also have found that CRF releases immunoreactive dynorphin A, a putative endogenous kappa opioid receptor agonist, from superfused mice spinal cords in vitro. Dynorphin A administered intracerebroventricularlly (i.c.v.) to mice has been shown to modulate the expression of morphine tolerance. In the present study, the possible modulatory effects of i.t. administered CRF as well as dynorphin A on morphine tolerance were studied in an acute tolerance model. Subcutaneous administration of 100 mg/kg of morphine sulfate (MS) to mice caused an acute tolerance to morphine-induced antinociception. The antinociceptive ED50 of MS was increased from 4.4 mg/kg (naive mice) to 17.9 mg/kg (4 hours after the injection of 100 mg/kg MS). To study the modulatory effects of spinally administered CRF and dynorphin A on the expression of morphine tolerance, CRF and dynorphin A were injected i.t. at 15 min and 5 min, respectively, before testing the tolerant mice by the tail-flick assay. The antinociceptive ED50 of MS in tolerant mice was decreased to 8.8 mg/kg and 7.1 mg/kg, respectively, after i.t. administration of CRF (0.1 nmol) and dynorphin A (0.2 nmol). In contrast, 0.5 nmol of alpha-helical CRF (9-41), a CRF antagonist and 0.4 nmol of norbinaltorphimine, a highly selective kappa opioid receptor antagonist, when administered i.t. at 15 min before the tail-flick test in tolerant mice, increased the antinociceptive ED50 of MS to 56.6 mg/kg and 88.8 mg/kg, respectively. These data confirmed the modulatory effect of dynorphin A on morphine tolerance and suggested that CRF, which releases dynorphin A in several central nervous system regions, also plays a modulatory role in the expression of morphine tolerance.  相似文献   

14.
Cysteine proteinase found in the spinal cord of rat, called nociceptin-converting enzyme (NCE), is competitively inhibited by dynorphin A and its fragment des-[Tyr(1)]-DYN A. This proteinase converts orphanin FQ/nociceptin (OFQ/N) to two major fragments: OFQ/N(1-11) and further OFQ/N(1-6) with analgesic properties. Dynorphin A at the concentration of 10 microM increases K(M) from 15.0 to 55.9 microM. The calculated K(i) for this interaction was estimated at 3.7 microM. This observation may suggest an interaction between opioid and nociceptive systems which may be affected by the balance between opioid and antiopioid systems. This balance between particular OFQ/N sequences that are derived from the same precursor and regulated by proteinases may play an important role in pain. Interestingly, dynorphin B does not reveal a similar action on the NCE.  相似文献   

15.
16.
Acidic fibroblast growth factor (aFGF; also known as FGF-1) is a potent neurotrophic factor that affects neuronal survival in the injured spinal cord. However, the pathological changes that occur with spinal cord injury (SCI) and the attribution to aFGF of a neuroprotective effect during SCI are still elusive. In this study, we demonstrated that rat SCI, when treated with aFGF, showed significant functional recovery as indicated by the Basso, Beattie, and Bresnahan locomotor rating scale and the combined behavior score (p < 0.01-0.001). Furthermore proteomics and bioinformatics approaches were adapted to investigate changes in the global protein profile of the damaged spinal cord tissue when experimental rats were treated either with or without aFGF at 24 h after injury. We found that 51 protein spots, resolvable by two-dimensional PAGE, had significant differential expression. Using hierarchical clustering analysis, these proteins were categorized into five major expression patterns. Noticeably proteins involved in the process of secondary injury, such as astrocyte activation (glial fibrillary acidic protein), inflammation (S100B), and scar formation (keratan sulfate proteoglycan lumican), which lead to the blocking of injured spinal cord regeneration, were down-regulated in the contusive spinal cord after treatment with aFGF. We propose that aFGF might initiate a series of biological processes to prevent or attenuate secondary injury and that this, in turn, leads to an improvement in functional recovery. Moreover the quantitative expression level of these proteins was verified by quantitative real time PCR. Furthermore we identified various potential neuroprotective protein factors that are induced by aFGF and may be involved in the spinal cord repair processes of SCI rats. Thus, our results could have a remarkable impact on clinical developments in the area of spinal cord injury therapy.  相似文献   

17.
Summary Explants and dissociated cells from normal adult spinal cord and regenerating cord of the teleostApteronotus albifrons were grown in vitro for periods of 8 to 12 wk. During this time the neurons showed extensive neurite outgrowth. Neurite outgrowth from tissue explants and dissociated cells of regenerated spinal cord starts sooner and is more profuse than that from normal (unregenerated) cord. Neurite outgrowth is maximized by using adhesive substrata and a high density of explants or dissociated cells. Inasmuch asApteronotus does regenerate its spinal cord naturally after injury, whereas mammals do not, this culture system will be useful to study factors that control (permit) regeneration of spinal neurons in this adult vertebrate.  相似文献   

18.
We have discovered cell growth inhibitory activity in a salt extract of pig spinal cords. The growth inhibitory factor was purified by gel-filtration, ion-exchange and high performance liquid chromatography. Incubation of MDCK cells with the inhibitor arrested their locomotion within half an hour, suppressed their proliferation, and caused them to become round. The round cells that were still attached to the culture plate were alive. Upon removal of the inhibitor these cells flattened out and resumed locomotion and proliferation. The inhibitor was 100 times less effective on CHO-K1 cells. The reversible effects of the inhibitor on MDCK cells and its little effects on CHO-K1 cells indicate that the inhibitory activity is not due to a non-specific toxic mechanism. The inhibitor was both heat-stable and resistant to several chemical treatments, including proteases. Its behavior upon ion exchange chromatography suggested that it was positively charged at neutral pH, whilst its molecular mass was estimated to be 350 or larger by gel-filtration FPLC analysis. The inhibitory fraction reacted extensively with fluorescamine, suggesting that the inhibitory factor has amine groups, which are a possible candidate for its positive charges. Since spermine and spermidine, unlike the inhibitor in the present study, irreversibly inhibited the growth of the MDCK cells, the inhibitory activity in the present study is thus not due to contamination by these polyamines. Our experiments also support that the inhibitor is not a peptide.  相似文献   

19.
P W Nance  A H Shears  D M Nance 《CMAJ》1985,133(1):41-42
A 16-year-old girl, one of dizygotic twins, presented in 1976 complaining of a 1-year history of a lack of coordination and an inability to run. The results of biochemical tests confirmed the diagnosis of classic abetalipoproteinemia. In addition to the recognized neurologic features of this disorder, she had a reduced evoked motor unit potential and markedly elevated serum levels of muscle enzymes, which suggested myositis. The serum vitamin E level was markedly decreased. Oral therapy with vitamin E, 800 mg daily, was begun, and in 1981 the dosage was increased to 3200 mg daily. Over the 7 years of follow-up she improved clinically, there was an increase in the evoked motor unit potential, the serum levels of some of the muscle enzymes decreased to normal, and the serum and tissue vitamin E levels increased significantly. It was concluded that treatment with high doses of vitamin E was responsible for the arrest of the usually progressive neuropathy and myopathy.  相似文献   

20.
Each year about 2,000 women of childbearing age in the United States have a spinal cord injury. Only a few mostly anecdotal reports describe pregnancy after such an injury. In a retrospective study of 16 women with a spinal cord injury, half of whom have a complete injury and about half quadriplegia, 25 pregnancies occurred, with 21 carried to full term. The women delayed pregnancy an average of 6.5 years after their injury, with an average age at first pregnancy of 26.8 years. Cesarean section was necessary in 4 patients because of inadequate progress of labor. In 5 deliveries an episiotomy and local anesthesia were required, 7 required epidural anesthesia, including all cesarean sections, and 10 did not require anesthesia. Several complications have been identified in the antepartum, intrapartum, and postpartum periods including autonomic hyperreflexia, premature labor, pressure sores, urinary tract infections, abnormal presentation, and failure to progress. Ultrasonography and amniocentesis were used selectively. Women with spinal cord injuries can have healthy children, although there are significant risks and these women have special needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号