首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level ( p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation.  相似文献   

2.
3.
4.
In this study, we explored the role of Bax inhibitor-1 (BI-1) on the expression of P450 2E1 and related ROS production. P450 2E1 protein, not mRNA, was expressed at relatively low levels in BI-1 plasmid-transfected cells (BI-1 cells) compared with neomycin-resistant vector-transfected cells (Neo cells). When exposed to ER stress, P450 2E1 expression and activity and ER membrane lipid peroxidation increased in both Neo cells and BI-1 cells, but to a lesser degree in BI-1 cells. This observation correlated with the lower level of ER stress in BI-1 cells than Neo cells. To examine the BI-1-associated P450 2E1 degradation mechanism, cells were treated with the lysosome inhibitor, bafilomycin and the proteasome inhibitor, MG132. Bafilomycin recovered the reduced P450 2E1 expression in BI-1 cells, but did not affect P450 2E1 expression in Neo cells. Next, proteosomal and lysosomal activities in Neo cells were compared to those in BI-1 cells. Although proteosomal activity was similar between Neo and BI-1 cells, LysoTracker and acridine orange labeling, lysosomal V-ATPase activity, and lysosomal cathepsin B expression were higher in BI-1 cells than in Neo cells. In the presence of ER stress, lysosomal activities decreased in Neo cells but did not change in BI-1 cells. P450 2E1 expression and ER membrane lipid peroxidation were greater in the hepatocytes and livers of BI-1 knock-out mice than in BI-1 wild-type cells and mice. Our results suggest that the BI-1-mediated enhancement of lysosomal activity regulates P450 2E1 expression and resultant ROS accumulation.  相似文献   

5.
The regulation of GTP-binding proteins (G proteins) was examined during the course of differentiation of neuroblastoma N1E-115 cells. N1E-115 cell membranes possess three Bordetella pertussis toxin (PTX) substrates assigned to alpha-subunits (G alpha) of Go (a G protein of unknown function) and "Gi (a G protein inhibitory to adenylate cyclase)-like" proteins and one substrate of Vibrio cholerae toxin corresponding to an alpha-subunit of Gs (a G protein stimulatory to adenylate cyclase). In undifferentiated cells, only one form of Go alpha was found, having a pI of 5.8 Go alpha content increased by approximately twofold from the undifferentiated state to 96 h of cell differentiation. This is mainly due to the appearance of another Go alpha form having a pI of 5.55. Both Go alpha isoforms have similar sizes on sodium dodecyl sulfate-polyacrylamide gels, are recognized by polyclonal antibodies to bovine brain Go alpha, are ADP-ribosylated by PTX, and are covalently myristylated in whole N1E-115 cells. In addition, immunofluorescent staining of N1E-115 cells with Go alpha antibodies revealed that association of Go alpha with the plasma membrane appears to coincide with the expression of the most acidic isoform and morphological cell differentiation. In contrast, the levels of both Gi alpha and Gs alpha did not significantly change, whereas that of the common beta-subunit increased by approximately 30% over the same period. These results demonstrate specific regulation of the expression of Go alpha during neuronal differentiation.  相似文献   

6.
7.
Neurotensin, bradykinin and somatostatin inhibited in a time- and concentration-dependent manner prostaglandin E1- or forskolin-stimulated cAMP production in neuroblastoma N1E115 cells. Cell treatment with 1 microgram/ml pertussis toxin for 6 hours reversed the inhibition elicited by peptides after short incubation periods (less than or equal to 1 min) but, in contrast, had no effect after longer incubation periods (greater than or equal to 3 min). Fluoroaluminate also inhibited prostaglandin E1-stimulated cAMP production in N1E115 cells, and this effect was not reversed by pertussis toxin. The 6 hour treatment with pertussis toxin was shown to be sufficient to ADP ribosylate virtually all of the 41 kD protein substrate corresponding to the alpha subunit of Gi. Protein kinase C activation with phorbol ester did not inhibit basal or stimulated cAMP production. Our data point to the existence of both pertussis toxin sensitive and insensitive mechanisms of neuropeptide-mediated inhibition of cAMP formation in N1E115 cells. The toxin insensitive response is not mediated by protein kinase C. The possibility is discussed that it results from the activation of a pertussis toxin insensitive G protein.  相似文献   

8.
9.
Abstract: Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.  相似文献   

10.
The total activities of monoamine oxidase (MAO) and the ratio of type B/type A activities were determined in mouse neuroblastoma N1E-115 cells, and in NX31T and NG108-15 hybrid cells derived from mouse neuroblastoma X rat sympathetic ganglion hybrid or mouse neuroblastoma X rat glioma hybrid cells. N1E-115 and NX31T cells possessed type A activities exclusively, although NG108-15 cells showed both type A (65-90%) and type B (10-35%) MAO activities. The activity of type A MAO in NX31T and N1E-115 cells was relatively constant during culturing periods in the presence or absence of dibutyryl cyclic AMP (Bt2cAMP), whereas total MAO activity and the ratio of type B MAO/type A MAO in NG108-15 cells increased as a function of culture periods. Prostaglandin E1 (PGE1) and theophylline, the best known combination to increase intracellular cyclic AMP content of NG108-15 cells, caused similar increases of MAO and of the type B/type A ratio in NG108-15 cells. The results suggest that MAO activity and expression of MAO B activity are regulated in NG108-15 cells in a cyclic AMP-dependent manner.  相似文献   

11.
Mucolipidosis type IV (MLIV) is caused by mutations in the ion channel mucolipin 1 (TRP-ML1). MLIV is typified by accumulation of lipids and membranous materials in intracellular organelles, which was hypothesized to be caused by the altered membrane fusion and fission events. How mutations in TRP-ML1 lead to aberrant lipolysis is not known. Here we present evidence that MLIV is a metabolic disorder that is not associated with aberrant membrane fusion/fission events. Thus, measurement of lysosomal pH revealed that the lysosomes in TRP-ML1(-/-) cells obtained from the patients with MLIV are over-acidified. TRP-ML1 can function as a H(+) channel, and the increased lysosomal acidification in TRP-ML1(-/-) cells is likely caused by the loss of TRP-ML1-mediated H(+) leak. Measurement of lipase activity using several substrates revealed a marked reduction in lipid hydrolysis in TRP-ML1(-/-) cells, which was rescued by the expression of TRP-ML1. Cell fractionation indicated specific loss of acidic lipase activity in TRP-ML1(-/-) cells. Furthermore, dissipation of the acidic lysosomal pH of TRP-ML1(-/-) cells by nigericin or chloroquine reversed the lysosomal storage disease phenotype. These findings provide a new mechanism to account for the pathogenesis of MLIV.  相似文献   

12.
13.
By applying the highly sensitive cytochemical Gautron's technique, we were able to reveal AChE activity in rat pancreatic acinar cells, particularly at the level of a complex membrane-bound network formed by tubules with varicosities located around the nuclei and close to the basolateral membrane. The Golgi apparatus was devoid of cytochemical reaction beside the trans-Golgi network cisternae, which showed a positive reaction. The RER of some acinar cells also presented a signal, demonstrating their capability of synthesizing AChE. Immunogold using a specific anti-AChE antibody yielded similar results. Double-labeling experiments corroborated the presence of enzyme cytochemical and immunocytochemical signals in the same lysosomal tubular network. Biochemical sedimentation assays confirmed the presence of AChE in acinar cells, which exists as two globular molecular forms, G(1) and G(4). These results were obtained with pancreatic tissue in situ as well as with isolated acinar cells maintained in culture and devoid of neural elements. The existence of a continuous tubular lysosomal network containing AChE is in agreement with previous reports on acinar and other cell types, and supports a more general hypothesis on dynamic continuities among cell structures. Whether AChE is being secreted by the acinar cells or internalized through this endo-lysosomal system was not defined. However, the capability of the acinar cells to synthesize AChE and to channel it through a tubular system is a good indication that the cells can modulate their cholinergic stimulation for optimal secretion of digestive enzymes.  相似文献   

14.
15.
The mouse acetylcholinesterase AChE(H) was expressed in the yeast Kluyveromyces lactis. The AChE(H) activity was detectable in intact cells whereas it was absent in the culture media. Glucanase treatment and immunoelectron microscopy data indicated that AChE(H) is anchored to plasma membrane and that the mouse GPI-signaling is compatible with the K. lactis targeting machinery. The AChE(H) was also expressed in a K. lactis strain carrying an inactivated allele of KlPMR1, the gene coding for a P-type Ca(2+)-ATPase of the Golgi apparatus. This mutant displays changes in protein glycosylation and cell wall structure. The AChE(H) activity detected in Klpmr1Delta cells was more than twofold higher than that observed in wild-type cells. The combination of AChE expression and anchoring with the characteristics of Klpmr1Delta strain of K. lactis resulted in yeast cells displaying high AChE activity. This could be regarded as a novel sensing unit to be employed for detecting AChE inhibitors as pesticides.  相似文献   

16.
The presence of acetylcholinesterase (AChE) mRNA and activity in the tissues and cells involved in immune responses prompted us to investigate the level and pattern of AChE components in spleen. AChE activity was higher in mouse spleen (0.46 +/- 0.13 micromol of acetylthiocholine split per hour and per mg protein) than in muscle or heart, but lower than in brain. The spleen was essentially free of butyrylcholinesterase (BuChE) activity. About 40% of spleen AChE was extracted with a saline buffer, and a further 40% with 1% Triton X-100. Sedimentation analyses, the splitting of subunits in AChE dimers, phosphatidylinositol-specific phospholipase C (PIPLC) exposure, and phenyl-agarose chromatography showed that hydrophilic (G1H, 43%) and amphiphilic AChE monomers (G1A, 36%), as well as amphiphilic dimers (G2A, 21%), occurred in spleen. All these molecules bound to fasciculin-2-Sepharose, although the extent of binding was higher for G1H (77%) than for G1A (63%) or G2A (48%) forms. Differences in the extent to which wheat germ lectin (WGA) adsorbed with AChE of mouse spleen and of erythrocyte allowed us to discard the blood origin of spleen AChE activity. A 62 kDa protein was labeled in spleen samples using antibodies against human AChE. The protein was attributed to AChE monomers since its size was the same, regardless of whether disulfide bonds were reduced or not. Since cholinergic stimulation modulates proliferation/maturation of lymphoid cells, AChE may be important for regulating the level of acetylcholine (ACh) in the neighborhood of cholinergic receptors (AChR) in spleen and other lymphoid tissues.  相似文献   

17.
Recent reports have stressed the need for a better understanding of earthworm biomarker responses. We aimed at investigating acethylcholinesterase (AChE) activity in the earthworm Eisenia andrei after exposure to carbaryl or its commercial formulation Zoril 5 under different in vitro and in vivo experiments. In addition, lysosome membrane stability was assessed by neutral red retention assay in the same experimental conditions. AChE basal Km and Vm values were about 0.16 mM and 41 nmol min(-1) mg protein(-1), respectively. Carbaryl dose-dependently decreased Vmax, while not affecting Km values. Carbaryl reduced earthworm AChE activity within 1 day of in vivo exposure to contaminated filter paper. Tested on soil, carbaryl inhibited AChE with the maximum effect after 3 days; in contrast, lysosome membrane stability of coelomocytes indicated a maximum toxicity after one day, followed by a recovery. AChE inhibition by Zoril 5 was highest after one day, while lysosome membrane stability declined progressively. In all cases, carbaryl dose-dependently decreased Vmax while not affecting Km values. In conclusion, E. andrei AChE activity assessed in vitro is dose-dependently inhibited by the carbamate compound carbaryl, which acts as a pure competitive inhibitor. In vivo experiments suggested that pure and co-formulated carbaryl have different time and/or dose dependent effects on earthworms. Our results further support the use of AChE inhibition as an indicator of pesticide contamination, to be included in a battery of biomarkers for monitoring soil toxicity.  相似文献   

18.
Neural cell differentiation during development is controlled by multiple signaling pathways, in which protein phosphorylation and dephosphorylation play an important role. In this study, we examined the role of pyrophosphatase1 (PPA1) in neuronal differentiation using the loss and gain of function analysis. Neuronal differentiation induced by external factors was studied using a mouse neuroblastoma cell line (N1E115). The neuronal like differentiation in N1E115 cells was determined by morphological analysis based on neurite growth length. In order to analyze the loss of the PPA1 function in N1E115, si-RNA specifically targeting PPA1 was generated. To study the effect of PPA1 overexpression, an adenoviral gene vector containing the PPA1 gene was utilized to infect N1E115 cells. To address the need for pyrophosphatase activity in PPA1, D117A PPA1, which has inactive pyrophosphatase, was overexpressed in N1E115 cells. We used valproic acid (VPA) as a neuronal differentiator to examine the effect of PPA1 in actively differentiated N1E115 cells. Si-PPA1 treatment reduced the PPA1 protein level and led to enhanced neurite growth in N1E115 cells. In contrast, PPA1 overexpression suppressed neurite growth in N1E115 cells treated with VPA, whereas this effect was abolished in D117A PPA1. PPA1 knockdown enhanced the JNK phosphorylation level, and PPA1 overexpression suppressed it in N1E115 cells. It seems that recombinant PPA1 can dephosphorylate JNK while no alteration of JNK phosphorylation level was seen after treatment with recombinant PPA1 D117A. Enhanced neurite growth by PPA1 knockdown was also observed in rat cortical neurons. Thus, PPA1 may play a role in neuronal differentiation via JNK dephosphorylation.  相似文献   

19.
Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.  相似文献   

20.
Proximal events in signaling by plasma membrane estrogen receptors   总被引:18,自引:0,他引:18  
Estradiol (E2) rapidly stimulates signal transduction from plasma membrane estrogen receptors (ER) that are G protein-coupled. This is reported to occur through the transactivation of the epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor, similar to other G protein-coupled receptors. Here, we define the signaling events that result in EGFR and ERK activation. E2-stimulated ERK required ER in breast cancer and endothelial cells and was substantially prevented by expression of a dominant negative EGFR or by tyrphostin AG1478, a specific inhibitor for EGFR tyrosine kinase activity. Transactivation/phosphorylation of EGFR by E2 was dependent on the rapid liberation of heparin-binding EGF (HB-EGF) from cultured MCF-7 cells and was blocked by antibodies to this ligand for EGFR. Expression of dominant negative mini-genes for Galpha(q) and Galpha(i) blocked E2-induced, EGFR-dependent ERK activation, and Gbetagamma also contributed. G protein activation led to activation of matrix metalloproteinases (MMP)-2 and -9. This resulted from Src-induced MMP activation, implicated using PP2 (Src family kinase inhibitor) or the expression of a dominant negative Src protein. Antisense oligonucleotides to MMP-2 and MMP-9 or ICI 182780 (ER antagonist) each prevented E2-induced HB-EGF liberation and ERK activation. E2 also induced AKT up-regulation in MCF-7 cells and p38beta MAP kinase activity in endothelial cells, blocked by an MMP inhibitor, GM6001, and tyrphostin AG1478. Targeting of only the E domain of ERalpha to the plasma membrane resulted in MMP activation and EGFR transactivation. Thus, specific G proteins mediate the ability of E2 to activate MMP-2 and MMP-9 via Src. This leads to HB-EGF transactivation of EGFR and signaling to multiple kinase cascades in several target cells for E2. The E domain is sufficient to enact these events, defining additional details of the important cross-talk between membrane ER and EGFR in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号