首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inoculation of B6D2F1 mice with T lymphocytes from the C57BL/6 parental strain induces an "immunosuppressive" graft-vs-host reaction (B6 GVH), whereas inoculation of T cells from the other, DBA/2 parental strain induces an "immunostimulatory" GVH reaction and a lupus-like disease (DBA GVH). The present study compares cytotoxic T lymphocyte (CTL) function in the spleens of these GVH mice as well as differences in the donor inoculum that could account for these different types of GVH. We observed that the B6 GVH induces an immunodeficiency that encompasses CTL precursors (and possibly T helper cells) and results in suppressor cells that abrogate responses to both trinitrophenyl (TNP)-modified self and third party alloantigens. In contrast, the DBA GVH induces only a T helper cell immunodeficiency and results in suppressor cells selective for class II restricted L3T4+ T helper cells. Chimeric T cells were detected in both types of GVH. In the B6 GVH both L3T4+ and Lyt-2+ donor cells were observed, although Lyt-2+ cells predominated. In the DBA GVH, donor T cells were almost exclusively of the L3T4+ phenotype. The lack of appreciable donor Lyt-2+ cells in the DBA GVH can be explained by a defect in the DBA donor inoculum manifested by a naturally occurring two-fold reduction in Lyt-2+ cell numbers as well as a nine-fold reduction in CTL precursors with anti-F1 specificity. T cells in the DBA inoculum, therefore, are predominantly L3T4+. A similar defect induced in B6 donor cells by anti-Lyt2 antibody and complement not only converted the suppressive GVH to a stimulatory GVH, as measured by anti-DNA antibodies, but also resulted in a T cell immune deficiency characteristic of the DBA GVH, i.e., a selective loss of the TNP-self CTL response. Thus the presence or absence of adequate numbers of functioning Lyt-2+ cells in the donor inoculum is correlated with the development of either a suppressive or stimulatory GVH, respectively. That donor Lyt-2+ cells mediate a suppressive GVH through cytolytic mechanisms is evidenced by greater than 70% reduction in B6 GVH spleen cell numbers and readily demonstrable anti-F1 CTL activity by these spleen cells despite an inability to generate anti-allogeneic or anti-TNP self CTL activity even in the presence of added T helper factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Most cytolytic T lymphocytes (CTL) recognize class I rather than class II MHC determinants, and relatively little is known about those CTL that do recognize class II MHC determinants. The present study was undertaken to document the specificity, phenotype, and precursor frequency of primary class II allospecific CTL. It was found that class II-allospecific CTL could be consistently generated in vitro from unprimed spleen or thymus populations in the presence of exogenously added helper factors. The class II MHC specificity of both the precursor and CTL effectors activated in primary cultures by Ia-disparate stimulator cells was documented both by blocking experiments with anti-Ia mAb and by the use of L cell transfectants. The mechanism by which primary allospecific CTL effectors lysed their targets appeared to involve direct cell-cell contact, because they failed to lyse bystander target cells. The frequency in unprimed spleen populations of precursor CTL specific for class II alloantigens was examined by limiting dilution analysis and was found to be as high as 1/15,000 splenocytes and approximately 10% of the frequency reported for primary class I allospecific CTL. Finally, the Lyt phenotype of primary class II allospecific CTL precursors and effectors was determined. It was found that anti-class II CTL derive from at least two distinct precursor subpopulations that are either L3T4+Lyt-2- or L3T4-Lyt-2+, and that the Lyt phenotype expressed by the CTL effectors are concordant with that of their precursors. No correlation was found between the I subregion gene products recognized by CTL effectors and the Lyt phenotype they expressed in that both I-A- and I-E-specific CTL were both L3T4+Lyt-2- and L3T4-Lyt-2+.  相似文献   

3.
The transfer of listeria-immune splenocytes into non-immune mice markedly increases host resistance to listeriosis. To study the mechanism for this enhancement, we compared the inflammatory response to infection in nonimmune and adoptively immunized mice. Despite much better containment of bacterial growth, adoptively immunized animals accumulated significantly fewer phagocytes (neutrophils and macrophages) in the spleen and liver than controls. Immune T cells not only inhibited phagocyte accumulation but also reduced the in vitro anti-listerial activity of splenocytes. Significant differences in phagocyte accumulation were observed even when the initial listeria dose was adjusted to produce comparable spleen listeria loads in immune and non-immune animals. However, bone marrow and peripheral blood phagocyte counts were similar in both groups. Depletion of Lyt-2+ cells (using mAb and C) from donor splenocytes prevented the transfer of protection and increased phagocyte accumulation without altering listeria-dependent IFN-gamma production by donor or recipient splenocytes in vitro. L3T4 depletion did not affect host resistance or phagocyte accumulation even though it reduced in vitro interferon production by donor cells. Hence the different effects of L3T4+ and Lyt-2+ cells in vivo cannot be explained simply by variations in IFN production. We suggest this paradoxical suppression of phagocyte accumulation during adoptive transfer may reflect lysis of bacteria-laden phagocytes by listeria-specific Lyt-2+ cells in vivo. Selective destruction of older, heavily infected cells might contribute to host resistance by eliminating a potential site for intracellular proliferation of bacteria.  相似文献   

4.
L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) is selectively toxic for human natural killer (NK) cells and cytotoxic T lymphocytes (CTL) at both the precursor and effector stage of differentiation. The present studies explored the effects of Leu-Leu-OMe on murine spleen cell function. Leu-Leu-OMe exposure removed NK function from murine spleen cells but spared their capacity to proliferate in response to lipopolysaccharide and Con A. The capacity to generate CTL from both L3T4 (+) and Lyt-2 (+) precursors was lost after Leu-Leu-OMe treatment, whereas alloantigen-induced proliferation and interleukin 2 (IL 2) production by L3T4 (+) T helper cells remained intact. Lethal graft vs host disease (GVHD), which developed in irradiated (C57BL/6 X DBA/2)F1 recipients of C57BL/6 bone marrow and spleen cells was completely prevented by Leu-Leu-OMe treatment of donor cells. In contrast depletion of Lyt-2 positive cells from the donor inoculum did not prevent acute GVHD in this fully major histo-compatibility complex (MHC) incompatible strain combination. However, Leu-Leu-OMe treatment of the Lyt-2 depleted inoculum completely prevented lethal GVHD, although the treated cells retained the capacity to proliferate and secrete IL 2 normally after in vitro stimulation with (C57BL/6 X DFA/2)F1 spleen cells. These findings indicate that L3T4 (+) T helper cells alone are unable to initiate lethal GVHD in this H-2 incompatible strain combination. Rather, lethal GVHD requires the transfer of a Leu-Leu-OMe sensitive T cell subset, likely to be thymus educated pre-CTL. Leu-Leu-OMe treatment should provide a useful way to delineate subpopulations of cells involved in the production of lethal GVHD and an approach to preventing this complication of bone marrow transplantation.  相似文献   

5.
We have studied the effect of methotrexate in murine acute graft vs host (GvH) disease at concentrations analogous to those used in human rheumatoid arthritis. The GvH reaction was induced by i.v. injection of parental spleen cells into a normal F1 recipient. The acute suppression of T cell function in GvH mice was prevented by methotrexate given orally for 10 days at 1.0 or 0.5 mg/kg but not at 0.25 mg/kg. T cell mitogen response and IL-2 secretion that were inhibited in GvH mice were restored by methotrexate. Protection from immunosuppression in drug-treated GvH mice lasted at least 3 wk after drug dosing was stopped. The mechanism of the protective effect appears to be a preferential inhibition of donor and host Lyt-2+ Ts cell proliferation. In mixing experiments we found that methotrexate inhibited Ts function in GvH mice. By dual fluorescence labeling we showed that the engraftment of donor Lyt-2+ cells was prevented by drug treatment. This was not true of donor L3T4+ cells which were clearly present in the spleens of GvH mice after methotrexate treatment. These donor L3T4 cells were functional in that they induced the production of anti-DNA autoantibodies in the methotrexate-treated GvH mice.  相似文献   

6.
Our study investigates the effect of a prior graft-vs-host (GVH) reaction on the subsequent ability of irradiated, bone marrow-re-populated mice to develop T cell function. The results indicate that such GVH-bone marrow transplanted (BMT) mice do not generate CTL responses to trinitrophenyl-modified syngeneic cells (TNP-self), but do generate strong CTL activity to H-2 alloantigens. This selective deficiency in TNP-self CTL response potential appeared as early as 10 days after GVH, and required both L3T4+ and Lyt-2+ donor T cells. The in vitro addition of either soluble Th factors or L3T4-enriched spleen cells from normal mice circumvented the defect in the TNP-self response in GVH-BMT mice. These results indicate that T effector function was not defective, and instead suggest a Th defect. Cell depletion and antibody-blocking, as well as IL-2 production experiments, indicate that the Th defect was selective for L3T4+ Th population and not for Lyt-2+ Th population. This defect in L3T4 Th function is not accounted for by the approximate twofold reduction in L3T4 cell numbers in GVH-BMT mice, because IL-2 production and CTL generation to L3T4-dependent Ag were at least eightfold below control levels. Rather, defective L3T4 Th function appears to be the consequence of a GVH-induced defect in thymic maturation because the defect was corrected in vivo by a neonatal parental thymus graft before irradiation and bone marrow transplantation. This system may be useful for elucidating the role of the thymus in the maturation of Th cells. Our findings raise the possibility that impaired development of T cell function occurring in marrow grafted patients who have undergone a GVH reaction could be partly due to a GVH-induced thymic defect.  相似文献   

7.
By using rabbit antiserum to a glycolipid, ganglio-n-tetraosylceramide (ASGM1), the accessory effect of natural killer (NK) cells on the generation of alloimmune CTL in mice was investigated. When normal C3H/He mice were immunized with C57BL/6 or BALB/c spleen cells, they generated alloimmune CTL with a surface marker phenotype of Thy-1+ Lyt-1-2+ ASGM1-, preceded by early augmentation of cytotoxic activity of NK cells with a Thy-1-Lyt-1-2-ASGM1+ phenotype. Administration of anti-ASGM1 (10 microliters) in mice resulted in a complete depletion of NK activity and ASGM1+ cells in the spleen even 1 day after injection, but no changes in the proportions of T (Thy-1+) cells and their Lyt-1 and Lyt-2 subsets as revealed by an immunofluorescence analyzer (FACS) and phagocytic cells. When these anti-ASGM1-treated mice were immunized with allogeneic cells, they showed neither augmented NK activity nor generation of alloimmune CTL, and spleen cells isolated from these anti-ASGM1-treated mice produced no CTL response to alloimmunization in vitro. Normal spleen cells treated with the antiserum and complement in vitro also showed a complete NK depletion without any deterioration of T cells and their Lyt-1 and Lyt-2 subsets, and when stimulated with allogeneic cells they generated no CTL. Spleen NK (ASGM1+) cells were purified by Percoll-gradient centrifugations followed by complement-dependent killing of T cells with the use of anti-Thy-1 monoclonal antibody, and were further purified by panning methods with anti-ASGM1, giving a preparation consisting of greater than 90% ASGM1+, Ly-5+ cells, and less than 0.5% of Thy-1+, Lyt-1+, and Lyt-2+ cells. These purified ASGM1+ Thy-1- cells alone generated no alloimmune CTL in response to alloantigens, suggesting that ASGM1+ NK cells contained no precursors of alloimmune CTL. When added into NK-depleted spleen cells, they restored the normal alloimmune CTL response of the spleen cells, indicating that ASGM1+ fractions contained cells to provide an accessory function for CTL generation. Lyt-1+ cells purified by panning methods did not restore the CTL response of NK-depleted spleen cells. These results indicate that ASGM1+ NK cells, but not Lyt-1+ helper T cells contaminating ASGM1+ fractions at undetectable levels, are responsible for the accessory function. When these purified ASGM1+ Thy-1- cells were stimulated with allogeneic cells, they produced IL 2 and IFN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The goal of this study was to assess and compare the allorecognition requirements for eliciting Lyt-2+ helper and effector functions from primary T cell populations. By using interleukin 2 (IL 2) secretion as a measure of T helper (Th) function, and cytolytic T lymphocyte (CTL) generation as a measure of effector function, this study compared the responses of Lyt-2+ T cells from wild-type B6 mice against a series of H-2Kb mutant determinants. Although all Kbm determinants stimulated B6 Lyt-2+ T cells to become cytolytic effector cells, the various Kbm determinants differed dramatically in their ability to stimulate Lyt-2+ T cells to function as IL 2-secreting helper cells. For example, in contrast to Kbm1 determinants that stimulated both helper and effector functions, Kbm6 determinants only stimulated B6 Lyt-2+ T cells to become cytolytic and failed to stimulate them to secrete IL 2. The distinct functional responses of Lyt-2+ T cells to Kbm6 determinants was documented by precursor frequency determinations, and was not due to an inability of the Kbm6 molecule to stimulate Lyt-2+ Th cells to secrete IL 2. Rather, it was the specific recognition and response of Lyt-2+ T cells to novel mutant epitopes on the Kbm6 molecule that was defective, such that anti-Kbm6 Lyt-2+ T cells only functioned as CTL effectors and did not function as IL 2-secreting Th cells. The failure of Lyt-2+ anti-Kbm6 T cells to function as IL 2-secreting Th cells was a characteristic of all Lyt-2+ T cell populations examined in which the response to novel mutant epitopes could be distinguished from the response to other epitopes expressed on the Kbm6 molecule. The absence of significant numbers of anti-Kbm6 Th cells in Lyt-2+ T cell populations was examined for its functional consequences on anti-Kbm6 CTL responsiveness. It was found that primary anti-Kbm6 CTL responses could be readily generated in vitro, but unlike responses to most class I alloantigens that can be mediated by Lyt-2+ Th cells, anti-Kbm6 CTL responses were strictly dependent upon self-Ia-restricted L3T4+ Th cells. Because the restriction specificity of L3T4+ Th cells is determined by the thymus, in which their precursors had differentiated, anti-Kbm6 CTL responsiveness, unlike responsiveness to most class I alloantigens, was significantly influenced by the Ia phenotype of the thymus in which the responder cells had differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The cytotoxic activity of alloreactive cytotoxic T lymphocytes (CTL) was maintained and augmented by transferring cells from a 5-day mixed lymphocyte culture MLC into a host culture (HC) containing indomethacin, freshly explanted normal spleen cells, and peritoneal cells which were syngeneic to the MLC cells. The MLC cells used in the transfer experiments were generated by culturing untreated H-2b splenic responders with irradiated H-2d stimulators, or were generated by culturing Lyt-2-depleted H-2b splenic responders with irradiated H-2d stimulators. The allo-CTL were found to be derived from the donor MLC (first culture) when unfractionated MLC cells were transferred into a host (second) culture and incubated for 5 days. In contrast, the allo-CTL were derived from host culture cells when Lyt-2-depleted MLC cells were transferred and the combined cultures incubated for 5 days. In the former case, the augmentation of MLC-derived cytotoxicity did not result from nonspecific expansion of all donor T cells; instead it was mediated by lymphokine(s), distinct from IL-2, produced by helper T cells generated in host culture, which appeared to selectively expand the antigen-specific CTL or to increase the cytotoxic activity of these CTL. The helper T cells were Thy-1+, L3T4+, and Lyt-2-. These findings indicate that antigen-nonspecific help was provided by helper cells or helper factors (lymphokines) generated in the host culture, which maintained and augmented the cytotoxic activity of the fully generated allo-CTL. This helper effect was also seen in the induction of primary allo-CTL responses which could be generated with fewer stimulating cells and with a stronger cytotoxic response at different R/S ratios tested. The generation of allo-CTL in second culture following transfer of Lyt-2-depleted MLC cells to host cultures appears to have involved antigen carryover from the MLC; however, antigen carryover alone was not sufficient. It appears that in the absence of Lyt-2+ suppressor T cells, antigen-specific help might be generated in donor cultures (Lyt-2-depleted MLC) which promoted or recruited the generation of antigen-specific CTL in host culture.  相似文献   

10.
The phenotype of T cells that initiate graft-vs-host disease (GVHD) in response to minor histocompatibility antigens (minor HA) was determined in three H-2 compatible strain combinations by using negative selection with monoclonal antibodies to Lyt-2 and L3T4 antigens to test the hypothesis that Lyt-2-positive T cells alone initiate GVHD. The phenotype of T cells required to initiate GVHD was different in each of the three strain combinations studied. Both Lyt-2+ and L3T4+ LP spleen cells were necessary to cause lethal GVHD in C57BL/6 recipients. In the reciprocal transplant, Lyt-2+, but not L3T4+ C57BL/6 spleen cells were sufficient to initiate GVHD in LP recipients. In contrast, L3T4+, but not Lyt-2+ B10.D2 spleen cells were found to initiate GVHD in BALB/c recipients. The optimal response to minor HA requires both Lyt-2+ and L3T4+ T cells because a mixture of the two subsets of spleen cells resulted in a more severe form of GVHD than either subset alone in all three strain combinations studied. This study demonstrates that L3T4+ cells participate in the initiation of GVHD in response to minor HA. The dominant T cell subset that initiates GVHD varies with the specific strain combination tested. The specific minor HA expressed in the transplant recipient, the H-2 type, and possibly non-major histocompatibility complex immune response genes of the donor strain appear to determine the phenotype of the initiator T cells.  相似文献   

11.
The severe inflammation characteristic of the infection of adult mice with murine lymphocytic choriomeningitis virus (LCMV) is induced earlier in unsuppressed, virus-infected recipients by the adoptive transfer of class I MHC-compatible, CD4- CD8+ LCMV-immune spleen cell populations. The time to onset of fatal LCM may also be slightly diminished, though not to the extent that would be expected from the enhanced kinetics of the extravasation of cells into cerebrospinal fluid. The development of symptoms is thus not solely related to the magnitude of the inflammatory process. The majority of the T lymphocytes in the inflammatory exudate are of host origin and have the size characteristics of resting cells, while the minority population of donor T cells show more of a lymphoblast morphology. The findings are consistent with the idea that relatively few CD8+ virus-immune effectors trigger an inflammatory process which consists largely of secondarily recruited host T cells and monocyte/macrophages.  相似文献   

12.
The present study investigates the distinctiveness of Class I H-2 alloantigen-reactive Lyt-2+ helper/proliferative T cell subset in the aspect of tolerance induction. Primary mixed lymphocyte reactions (MLR) revealed that Lyt-2+ and L3T4+ T cell subsets from C57BL/6 (B6) mice were exclusively capable of responding to class I H-2 [B6-C-H-2bm1 (bm1)]- and class II H-2 [B6-C-H-2bm12 (bm12)]-alloantigens, respectively. Anti-bm12 MLR was not affected by i.v. injection of bm12 spleen cells into recipient B6 mice. In contrast, a single i.v. administration of bm1 spleen cells into B6 mice resulted in the abrogation of the capacity of recipient B6 spleen and lymph node cells to give anti-bm1 MLR. This suppression was bm1 alloantigen-specific, since lymphoid cells from B6 mice i.v. presensitized with bm1 cells exhibited comparable anti-bm12 primary MLR to that obtained by normal B6 lymphoid cells. Such tolerance was rapidly (24 h after the i.v. injection of bm1 cells) inducible and lasting for at shortest 3 wk. Addition of lymphoid cells from anti-bm1-tolerant B6 mice to cultures of normal B6 lymphoid cells did not suppress the proliferative responses of the latter cells, indicating that the tolerance is not due to the induction of suppressor cells but attributed to the elimination or functional impairment of anti-bm1 proliferative clones. The tolerance was also demonstrated by the failure of tolerant lymphoid cells to produce IL-2. It was, however, found that anti-bm1 CTL responses were generated by tolerant lymphoid cells which were unable to induce the anti-bm1 MLR nor to produce detectable level of IL-2. These results demonstrate that class I H-2 alloantigen-reactive Lyt-2+ Th cell subset exhibits a distinct property which is expressed by neither Lyt-2+ CTL directed to class I H-2 nor L3T4+ Th cells to class II H-2 alloantigens.  相似文献   

13.
14.
Hybrid mice of the (B6 X bm12)F1 combination were inoculated i.v. with parental B6 spleen cells to induce a class II graft-vs-host disease (GVH). Such mice failed to generate in vitro cytotoxic T lymphocyte (CTL) responses that were dependent upon L3T4+ T helper cell (Th) function (e.g., anti-B6-TNP) but were capable of generating in vitro CTL responses that could be mediated by Lyt-2+ Th cells (anti-allo class I). When Th function was assayed directly by interleukin 2 (IL 2) secretion, class II GVH animals were found to be deficient in L3T4+ but not Lyt-2+ IL 2-secreting Th cells. This selective deficiency in L3T4+ Th function correlates with a selective decrease in class II GVH mice of host-derived derived L3T4+ T cells. In addition, it was found that the spleens of class II GVH mice contained cells capable of selectively suppressing L3T4+ Th function. In contrast, mice in which a class I + II GVH occurred were depleted of both L3T4+ and Lyt-2+ Th function as assessed by IL 2 production. The findings that class II GVH selectively depletes L3T4+ T cells and T cell functions are discussed with respect to the immune function of distinct T cell subsets in normal and diseased states.  相似文献   

15.
Class II-specific allogeneic cytolytic T lymphocytes (CTL) consist of two types of cells, i.e., Lyt-2+L3T4- and Lyt-2-L3T4 T cells. The Lyt-2+L3T4- class II-specific CTL population constitutes a conspicuous exception to the general correlation observed between the class of major histocompatibility complex antigen recognized and the type of accessory molecules expressed by T cells. In order to examine the specificity of such an exceptional T cell population, CTL clones were established by limiting dilution of a bulk CTL line developed in an I region incompatible combination of mouse strains, B10.QBR anti-B10.MBR. These CTL lines showed single genetic specificity indicating their clonal nature with respect to CTL activities. Lyt-2+L3T4- (2+4-), Lyt-2-L3T4+ (2-4+) and Lyt-2-L3T4- (2-4-) clones were obtained. Among many CTL clones showing a spectrum of genetic specificities, 2+4- and 2-4+ clones with apparent I-Ak-specificity, were studied further and four lines of evidence confirmed their class II specificity: 1) genes encoding the target antigen for these CTL clones were mapped within the I-A subregion by simple genetics; 2) an I-Ak-specific monoclonal antibody readily blocked specific cytolysis by these clones; 3) the clones failed to react with cells expressing mutated I-Ak antigens; and 4) a B cell tumor transfected with alpha- and beta-chain genes of I-Ak was specifically lysed by these CTL clones. These data therefore establish the existence of Lyt-2+ CTL with genuine class II specificity. All 2-4+ CTL were sensitive to the blocking effect of an antibody to L3T4, whereas none of the 2+4- class II-specific CTL were sensitive to blocking by an anti-Lyt-2 antibody, indicating that class II-specific CTL with "wrong phenotype" is not dependent on the function of the accessory molecule. Besides true class II-specific CTL clones, 2+4- clones with a spectrum of genetic specificities were obtained, including clones recognizing a combination of an I-Ak product and the Kb molecule. Two 2-4- clones were also specific for the combination of Kb + I-Ak. These clones most likely recognize an allogeneic class II antigen in the context of a class I antigen and therefore would more appropriately be included in the class I-restricted T cell population.  相似文献   

16.
The roles of Class II-restricted L3T4+ T cells and of accessory cells (AC) during the in vitro generation of Class I-restricted Lyt-2+ cytotoxic T cells (CTL) specific for a Class II-negative syngeneic tumor cell line, FBL, was examined. Treatment of responder FBL-immune spleen cells with alpha L3T4 plus complement before culture, as well as the direct addition of alpha L3T4 to cultures, diminished the generation of FBL-specific CTL. The contribution of L3T4+ cells could be completely replaced by the addition of exogenous cytokines. The data demonstrate that the optimal generation of FBL-specific Lyt-2+ CTL requires the presence of L3T4+ cells, presumably to provide necessary lymphokines. FBL-specific CTL could not be generated from purified FBL-immune T cells in the absence of AC. Syngeneic Ia+ macrophages (M phi), added at the initiation of culture, restored the response of purified T cells. Pretreatment of M phi with ammonium chloride or chloroquine, or the addition of monoclonal alpha I-Ab antibody at the initiation of culture, inhibited the ability of M phi to reconstitute the CTL response. Finally, the addition of exogenous helper factors could replace M phi and reconstitute the FBL-specific response of AC-depleted immune T cells. These results suggest that during the generation of Lyt-2+ CTL to a syngeneic tumor expressing only Class I MHC antigens, Ia+ AC are required to biochemically process antigen released from the tumor cells and present this modified antigen to Class II-restricted T helper cells.  相似文献   

17.
Primary and secondary cytotoxic T lymphocyte responses to minor alloantigens can be suppressed by priming host mice with a high dose (10(8) cells) of alloantigenic donor spleen cells (SC). Such suppression is antigen specific and transferable into secondary hosts with T cells. One interpretation of this is that antigen-specific host suppressor T cells (Ts) are activated. Alternatively, donor Lyt-2+ T cells, introduced in the priming inoculum, may inactivate host CTL precursors (CTLp) that recognize the priming (donor) alloantigens. Donor cells that act in this way are termed veto T cells. The experiments described here exclude veto T cell participation in transferable alloantigen-specific suppression, and demonstrate the operation of an alloantigen-specific host-derived T suppressor (Ts) cell. The origin of the Ts has been studied directly by using Thy-1-disparate BALB/c mice. The cell responsible for the transfer of suppression of a secondary CTL response to B10 minors was of the host Thy-1 allotype, and so originated in the host spleen and was not introduced in the priming inoculum. Secondly, antigen-specific Ts generated in CBA female mice against B10 minors could act on CTL responses to an unequivocally non-cross-reactive-third party antigen (H-Y), provided the two antigens were expressed on the same cell membrane. Such third-party suppression is incompatible with the operation of veto T cells. Depletion of Thy-1.2+ or Lyt-2+ cells from the suppression-inducing donor SC inoculum did not abrogate suppression induction in BALB/c mice; instead, suppression was enhanced. The demonstration of veto cell activity in similarly primed mice by other groups of investigators indicates that both types of suppression may operate. However, our results show that only antigen-specific Ts can mediate the transferable suppression of CTL responses to alloantigens.  相似文献   

18.
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.  相似文献   

19.
The kinetics of the anti-recipient cytotoxic cell response of spleen cells from mice undergoing graft-vs-host disease (GVHD) induced to minor histocompatibility antigens were studied. Two population of cytotoxic cells were identified. Cytotoxic T lymphocytes (CTL) were present in recipient spleens 2 and 3 wk after transplantation but disappeared from the spleens before the onset of clinical disease. Cytotoxic T lymphocyte precursors (CTLp) were first detected in recipient spleens 2 wk after transplantation and were present during clinical disease. CTL may function as effectors in GVHD induced to minor histocompatibility antigens.  相似文献   

20.
Studies were performed to attempt to define the T cell subset responsible for resistance to Toxoplasma gondii. A temperature-sensitive mutant (ts-4) strain of T. gondii was used for immunization because it causes infection but does not persist in the host. Immunization with this strain induced marked resistance against lethal challenge infection with virulent strains of T. gondii in mice. The resistance could be transferred to normal recipient mice by i.v. injection of spleen cells from ts-4-immunized mice. Marked inhibition of cyst formation in the recipient mice was also noted. The protective activity of immune spleen cells was removed by pretreatment of the spleen cells with anti-Thy-1.2 and C, indicating that T cells are responsible for the observed protection. Pretreatment of immune spleen cells with anti-Lyt-2.2 and C completely ablated their protective effect; pretreatment with anti-Lyt-1.2 or anti-L3T4 and C had lesser effects on their ability to transfer resistance. The effect of anti-Lyt-1.2 was the same as that obtained with anti-L3T4. This suggested that one T cell subset that is partially responsible for protection has both Lyt-1.2 and L3T4 markers on the cell surface. These results indicate that there are substantial roles for both the Lyt-2+ and Lyt-1+, L3T4 T cell subsets in dual regulation of resistance against toxoplasma infection and that Lyt-2+ T cells are the principal mediator of the resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号