首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yin A  Korzh S  Winata CL  Korzh V  Gong Z 《PloS one》2011,6(3):e18431
BACKGROUND: Wnt signaling plays critical roles in mammalian lung development. However, Wnt signaling in the development of the zebrafish swimbladder, which is considered as a counterpart of mammalian lungs, have not been explored. To investigate the potential conservation of signaling events in early development of the lung and swimbladder, we wish to address the question whether Wnt signaling plays a role in swimbladder development. METHODOLOGY/PRINCIPAL FINDINGS: For analysis of zebrafish swimbladder development, we first identified, by whole-mount in situ hybridization (WISH), has2 as a mesenchymal marker, sox2 as the earliest epithelial marker, as well as hprt1l and elovl1a as the earliest mesothelial markers. We also demonstrated that genes encoding Wnt signaling members Wnt5b, Fz2, Fz7b, Lef1, Tcf3 were expressed in different layers of swimbladder. Then we utilized the heat-shock inducible transgenic lines hs:Dkk1-GFP and hs:ΔTcf-GFP to temporarily block canonical Wnt signaling. Inhibition of canonical Wnt signaling at various time points disturbed precursor cells specification, organization, anterioposterior patterning, and smooth muscle differentiation in all three tissue layers of swimbladder. These observations were also confirmed by using a chemical inhibitor (IWR-1) of Wnt signaling. In addition, we found that Hedgehog (Hh) signaling was activated by canonical Wnt signaling and imposed a negative feedback on the latter. SIGNIFICANCE/CONCLUSION: We first provided a new set of gene markers for the three tissue layers of swimbladder in zebrafish and demonstrated the expression of several key genes of Wnt signaling pathway in developing swimbladder. Our functional analysis data indicated that Wnt/β-catenin signaling is required for swimbladder early development and we also provided evidence for the crosstalk between Wnt and Hh signaling in early swimbladder development.  相似文献   

2.
APC dosage effects in tumorigenesis and stem cell differentiation   总被引:5,自引:0,他引:5  
It is well established that concentration gradients of signaling molecules (the so-called "morphogens") organize and pattern tissues in developing animals. In particular, studies in Drosophila and different vertebrates have shown that gradients of the Wnt, Hedgehog (Hh) and transforming growth factor-beta (TGF-beta) families of morphogens play critical roles in limb patterning. Morphogens are often expressed in organizing centres and can act over a long range to coordinate the patterning of an entire field of cells. These observations imply that exposure to different concentrations of these diffusible factors may trigger differential cellular responses. In order to study these dosage-dependent Wnt/beta-catenin signaling effects, we have generated several hypomorphic mutant alleles at the mouse Apc locus and studied their cellular and phenotypic outcomes in stem cell renewal and differentiation, and in tumorigenesis. The results clearly show that Apc mutations differentially affect the capacity of stem cells to differentiate in a dosage-dependent fashion. Likewise, different Apc mutations (and the corresponding Wnt signaling dosages) confer different degrees of susceptibility to tumorigenesis in the corresponding mouse models. These results have implications for the understanding of the molecular and cellular basis of tumor initiation by defects in the Wnt pathway. We propose a model in which adult somatic stem cell compartments are characterized by tissue-specific beta-catenin threshold levels for cell proliferation, differentiation and apoptosis. Different APC mutations will result in different levels of beta-catenin signaling, thus conferring different degrees of tumor susceptibility in different tissues. Hence, beta-catenin dosage-dependent effects may not only explain how a single pathway is involved in the development and homeostasis of different tissues, but also its pleiotrophic role in tumorigenesis.  相似文献   

3.
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.  相似文献   

4.
Branching morphogenesis in the lung serves as a model for the complex patterning that is reiterated in multiple organs throughout development. Beta-catenin and Wnt signaling mediate critical functions in cell fate specification and differentiation, but specific functions during branching morphogenesis have remained unclear. Here, we show that Wnt/beta-catenin signaling regulates proximal-distal differentiation of airway epithelium. Inhibition of Wnt/beta-catenin signaling, either by expression of Dkk1 or by tissue-specific deletion of beta-catenin, results in disruption of distal airway development and expansion of proximal airways. Wnt/beta-catenin functions upstream of BMP4, FGF signaling, and N-myc. Moreover, we show that beta-catenin and LEF/TCF activate the promoters of BMP4 and N-myc. Thus, Wnt/beta-catenin signaling is a critical upstream regulator of proximal-distal patterning in the lung, in part, through regulation of N-myc, BMP4, and FGF signaling.  相似文献   

5.
Wnt7b regulates mesenchymal proliferation and vascular development in the lung   总被引:11,自引:0,他引:11  
Although the Wnt signaling pathway regulates inductive interactions between epithelial and mesenchymal cells, little is known of the role that this pathway plays during lung development. Wnt7b is expressed in the airway epithelium, suggesting a possible role for Wnt-mediated signaling in the regulation of lung development. To test this hypothesis, we have mutated Wnt7b in the germline of mice by replacement of the first exon with the lacZ-coding region. Wnt7b(lacZ-/-) mice exhibit perinatal death due to respiratory failure. Defects in early mesenchymal proliferation leading to lung hypoplasia are observed in Wnt7b(lacZ-/-) embryos. In addition, Wnt7b(lacZ-/-) embryos and newborn mice exhibit severe defects in the smooth muscle component of the major pulmonary vessels. These defects lead to rupture of the major vessels and hemorrhage in the lungs after birth. These results demonstrate that Wnt7b signaling is required for proper lung mesenchymal growth and vascular development.  相似文献   

6.
7.
In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.  相似文献   

8.
Wnt signaling regulates a variety of developmental processes in animals. Although the beta-catenin-dependent (canonical) pathway is known to control cell fate, a similar role for noncanonical Wnt signaling has not been established in mammals. Moreover, the intracellular cascades for noncanonical Wnt signaling remain to be elucidated. Here, we delineate a pathway in which Wnt3a signals through the Galpha(q/11) subunits of G proteins to activate phosphatidylinositol signaling and PKCdelta in the murine ST2 cells. Galpha(q/11)-PKCdelta signaling is required for Wnt3a-induced osteoblastogenesis in these cells, and PKCdelta homozygous mutant mice exhibit a deficit in embryonic bone formation. Furthermore, Wnt7b, expressed by osteogenic cells in vivo, induces osteoblast differentiation in vitro via the PKCdelta-mediated pathway; ablation of Wnt7b in skeletal progenitors results in less bone in the mouse embryo. Together, these results reveal a Wnt-dependent osteogenic mechanism, and they provide a potential target pathway for designing therapeutics to promote bone formation.  相似文献   

9.
During regional patterning of the anterior neural plate, a medially positioned domain of cells is specified to adopt retinal identity. These eye field cells remain coherent as they undergo morphogenetic events distinct from other prospective forebrain domains. We show that two branches of the Wnt signaling pathway coordinate cell fate determination with cell behavior during eye field formation. Wnt/beta-catenin signaling antagonizes eye specification through the activity of Wnt8b and Fz8a. In contrast, Wnt11 and Fz5 promote eye field development, at least in part, through local antagonism of Wnt/beta-catenin signaling. Additionally, Wnt11 regulates the behavior of eye field cells, promoting their cohesion. Together, these results allow us to postulate a model in which Wnt11 and Fz5 signaling promotes early eye development through the coordinated antagonism of signals that suppress retinal identity and promotion of coherence of eye field cells.  相似文献   

10.
11.
The establishment of the vertebrate body plan involves patterning of the ectoderm, mesoderm, and endoderm along the dorsoventral and antero-posterior axes. Interactions among numerous signaling molecules from several multigene families, including Wnts, have been implicated in regulating these processes. Here we provide evidence that the zebrafish colgate(b382) (col) mutation results in increased Wnt signaling that leads to defects in dorsal and anterior development. col mutants display early defects in dorsoventral patterning manifested by a decrease in the expression of dorsal shield-specific markers and ectopic expression of ventrolaterally expressed genes during gastrulation. In addition to these early patterning defects, col mutants display a striking regional posteriorization within the neuroectoderm, resulting in a reduction in anterior fates and an expansion of posterior fates within the forebrain and midbrain-hindbrain regions. We are able to correlate these phenotypes to the overactivation of Wnt signaling in col mutants. The early dorsal and anterior patterning phenotypes of the col mutant embryos are selectively rescued by inactivation of Wnt8 function by morpholino translational interference. In contrast, the regionalized neuroectoderm posterioriorization phenotype is selectively rescued by morpholino-mediated inactivation of Wnt8b. These results suggest that col-mediated antagonism of early and late Wnt-signaling activity during gastrulation is normally required sequentially for both early dorsoventral patterning and the specification and patterning of regional fates within the anterior neuroectoderm.  相似文献   

12.
Wnt/beta-catenin signaling regulates many aspects of early vertebrate development, including patterning of the mesoderm and neurectoderm during gastrulation. In zebrafish, Wnt signaling overcomes basal repression in the prospective caudal neurectoderm by Tcf homologs that act as inhibitors of Wnt target genes. The vertebrate homolog of Drosophila nemo, nemo-like kinase (Nlk), can phosphorylate Tcf/Lef proteins and inhibit the DNA-binding ability of beta-catenin/Tcf complexes, thereby blocking activation of Wnt targets. By contrast, mutations in a C. elegans homolog show that Nlk is required to activate Wnt targets that are constitutively repressed by Tcf. We show that overexpressed zebrafish nlk, in concert with wnt8, can downregulate two tcf3 homologs, tcf3a and tcf3b, that repress Wnt targets during neurectodermal patterning. Inhibition of nlk using morpholino oligos reveals essential roles in regulating ventrolateral mesoderm formation in conjunction with wnt8, and in patterning of the midbrain, possibly functioning with wnt8b. In both instances, nlk appears to function as a positive regulator of Wnt signaling. Additionally, nlk strongly enhances convergent/extension phenotypes associated with wnt11/silberblick, suggesting a role in modulating cell movements as well as cell fate.  相似文献   

13.
Multiple signaling pathways regulate proliferation and differentiation of neural progenitor cells during early development of the central nervous system (CNS). In the spinal cord, dorsal signaling by bone morphogenic protein (BMP) acts primarily as a patterning signal, while canonical Wnt signaling promotes cell cycle progression in stem and progenitor cells. However, overexpression of Wnt factors or, as shown here, stabilization of the Wnt signaling component beta-catenin has a more prominent effect in the ventral than in the dorsal spinal cord, revealing local differences in signal interpretation. Intriguingly, Wnt signaling is associated with BMP signal activation in the dorsal spinal cord. This points to a spatially restricted interaction between these pathways. Indeed, BMP counteracts proliferation promoted by Wnt in spinal cord neuroepithelial cells. Conversely, Wnt antagonizes BMP-dependent neuronal differentiation. Thus, a mutually inhibitory crosstalk between Wnt and BMP signaling controls the balance between proliferation and differentiation. A model emerges in which dorsal Wnt/BMP signal integration links growth and patterning, thereby maintaining undifferentiated and slow-cycling neural progenitors that form the dorsal confines of the developing spinal cord.  相似文献   

14.
15.
Kajiwara K  Kamamoto M  Ogata S  Tanihara M 《Peptides》2008,29(9):1479-1485
Wnt signaling cascades play a crucial role in the maintenance of stem cell niches in many tissues as well as in embryonic patterning and cell-fate determination. Wnt signaling pathways have been well studied; however, the precise binding mechanism of Wnt protein to its receptor has not yet been clarified. Here we show the design and synthesis of seven novel peptide candidates for a receptor-binding site of human Wnt-1 based on its hydrophilicity and beta-turn profiles. Among these Wnt-derived peptides, only WP7, which corresponds to residues 301-320 of human Wnt-1, bound to the soluble receptor for Wnt-1, mouse Frizzled-1/Fc chimera, promoted PC12 cell adherence, increased level of cytosolic beta-catenin in PC12 cells, and induced adhesion and neuronal differentiation of hippocampal neural precursor cells. These results suggest that residues 301-320 of human Wnt-1 is one of the receptor-binding sites and that WP7 may activate the canonical Wnt pathway. When combined with an appropriate matrix, the action of this Wnt-derived peptide, WP7, can be limited to within a location, and therefore could be useful in the regeneration of many tissues, without fear of tumor generation.  相似文献   

16.
17.
Otic fibrocytes tether the cochlear duct to the surrounding otic capsule but are also critically involved in maintenance of ion homeostasis in the cochlea, thus, perception of sound. The molecular pathways that regulate the development of this heterogenous group of cells from mesenchymal precursors are poorly understood. Here, we identified epithelial Wnt7a and Wnt7b as possible ligands of Fzd-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated periotic mesenchyme (POM). Mice with a conditional deletion of Ctnnb1 in the POM exhibited a complete failure of fibrocyte differentiation, a severe reduction of mesenchymal cells surrounding the cochlear duct, loss of pericochlear spaces, a thickening and partial loss of the bony capsule and a secondary disturbance of cochlear duct coiling shortly before birth. Analysis at earlier stages revealed that radial patterning of the POM in two domains with highly condensed cartilaginous precursors and more loosely arranged inner mesenchymal cells occurred normally but that proliferation in the inner domain was reduced and cytodifferentiation failed. Cells with mis/overexpression of a stabilized form of Ctnnb1 in the entire POM mesenchyme sorted to the inner mesenchymal compartment and exhibited increased proliferation. Our analysis suggests that Wnt signals from the cochlear duct epithelium are crucial to induce differentiation and expansion of fibrocyte precursor cells. Our findings emphasize the importance of epithelial-mesenchymal signaling in inner ear development.  相似文献   

18.
Adult myoblasts retain plasticity in developmental potential and can be induced to undergo myogenic, adipogenic, or osteoblastogenic differentiation in vitro. In this report, we show that the balance between myogenic and adipogenic potential in myoblasts is controlled by Wnt signaling. Furthermore, this balance is altered during aging such that aspects of both differentiation programs are coexpressed in myoblasts due to decreased Wnt10b abundance. Mimicking Wnt signaling in aged myoblasts through inhibition of glycogen synthase kinase or through overexpression of Wnt10b resulted in inhibition of adipogenic gene expression and sustained or enhanced myogenic differentiation. On the other hand, myoblasts isolated from Wnt10b null mice showed increased adipogenic potential, likely contributing to excessive lipid accumulation in actively regenerating myofibers in vivo in Wnt10b-/- mice. Whereas Wnt10b deficiency contributed to increased adipogenic potential in myoblasts, the augmented myogenic differentiation potential observed is likely the result of a compensatory increase in Wnt7b during differentiation of Wnt10b-/- myoblasts. No such compensation was apparent in aged myoblasts and in fact, both Wnt5b and Wnt10b were down-regulated. Thus, alteration in Wnt signaling in myoblasts with age may contribute to impaired muscle regenerative capacity and to increased muscle adiposity, both characteristic of aged muscle.  相似文献   

19.
Zhu X  Zhu H  Zhang L  Huang S  Cao J  Ma G  Feng G  He L  Yang Y  Guo X 《Developmental biology》2012,365(2):328-338
Wnt proteins are diffusible morphogens that play multiple roles during vertebrate limb development. However, the complexity of Wnt signaling cascades and their overlapping expression prevent us from dissecting their function in limb patterning and tissue morphogenesis. Depletion of the Wntless (Wls) gene, which is required for the secretion of various Wnts, makes it possible to genetically dissect the overall effect of Wnts in limb development. In this study, the Wls gene was conditionally depleted in limb mesenchyme and ectoderm. The loss of mesenchymal Wls prevented the differentiation of distal mesenchyme and arrested limb outgrowth, most likely by affecting Wnt5a function. Meanwhile, the deletion of ectodermal Wls resulted in agenesis of distal limb tissue and premature regression of the distal mesenchyme. These observations suggested that Wnts from the two germ layers differentially regulate the pool of undifferentiated distal limb mesenchyme cells. Cellular behavior analysis revealed that ectodermal Wnts sustain mesenchymal cell proliferation and survival in a manner distinct from Fgf. Ectodermal Wnts were also shown for the first time to be essential for distal tendon/ligament induction, myoblast migration and dermis formation in the limb. These findings provide a comprehensive view of the role of Wnts in limb patterning and tissue morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号