首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human cytomegalovirus (HCMV) exhibits a highly restricted host range. In this study, we sought to examine the relative significance of host and viral factors in activating early gene expression of the HCMV UL54 (DNA polymerase) promoter in murine cells. Appropriate activation of the UL54 promoter at early times is essential for viral DNA replication. To study how the HCMV UL54 promoter is activated in murine cells, a transgenesis system based on yeast artificial chromosomes (YACs) was established for HCMV. A 178-kb YAC, containing a subgenomic fragment of HCMV encompassing the majority of the unique long (UL) region, was constructed by homologous recombination in yeast. This HCMV YAC backbone is defective for viral growth and lacks the major immediate-early (IE) gene region, thus permitting the analysis of essential cis-acting sequences when complemented in trans. To quantitatively measure the level of gene expression, we generated HCMV YACs containing a luciferase reporter gene inserted downstream of either the UL54 promoter or, as a control for late gene expression, the UL86 promoter, which directs expression of the major capsid protein. To determine the early gene activation pathway, point mutations were introduced into the inverted repeat 1 (IR1) element of the UL54 promoter of the HCMV YAC. In the transgenesis experiments, HCMV YACs and derivatives generated in yeast were introduced into NIH 3T3 murine cells by polyethylene glycol-mediated fusion. We found that infection of YAC, but not plasmid, transgenic lines with HCMV was sufficient to fully recapitulate the UL54 expression program at early times of infection, indicating the importance of remote regulatory elements in influencing regulation of the UL54 promoter. Moreover, YACs containing a mutant IR1 in the UL54 promoter led to reduced ( approximately 30-fold) reporter gene expression levels, indicating that HCMV major IE gene activation of the UL54 promoter is fully permissive in murine cells. In comparison with HCMV, infection of YAC transgenic NIH 3T3 lines with murine cytomegalovirus (MCMV) resulted in lower (more than one order of magnitude) efficiency in activating UL54 early gene expression. MCMV is therefore not able to fully activate HCMV early gene expression, indicating the significance of virus over host determinants in the cross-species activation of key early gene promoters. Finally, these studies show that YAC transgenesis can be a useful tool in functional analysis of viral proteins and control of gene expression for large viral genomes.  相似文献   

3.
The human cytomegalovirus (HCMV) XbaI E cloned DNA fragment of approximately 20 kilobases can complement an adenovirus mutant (dl312) defective in the E1a viral gene product (D. J. Spector and M. J. Tevethia, Virology 151:329-338, 1986). This viral DNA fragment contains three immediate-early (IE) genes between 0.709 and 0.751 map units (M. F. Stinski, D. R. Thomsen, R. M. Stenberg, and L. C. Goldstein, J. Virol. 46:1-14, 1983). Two of the IE genes, IE1 and IE2, were isolated and tested for a role in regulating viral gene expression. Since HCMV early and late promoters require additional characterization, the chloramphenicol acetyl transferase (cat) gene, driven by the adenovirus E2 promoter, was used as an indicator of gene expression. cat expression from this heterologous viral promoter was shown to be stimulated by HCMV at early times after infection. The IE1 gene product did not function independently in activating this promoter. The IE2 gene products could independently stimulate the expression of a plasmid of a plasmid when the cat gene was placed downstream of the inducible E2 promoter (E2CAT). Five proteins of different sizes have been predicted to originate from IE2, depending on mRNA splicing. The protein products specified by the IE2 gene were characterized with an antibody to a synthetic peptide according to the open reading frame of exon 2. Three of the five proteins are encoded by exon 2. Three viral proteins of 82, 54, and 28 kilodaltons (kDa) were detected. The exons contained in the region designated as IE2a have open reading frames that could code for two of the smaller proteins of 27 and 30 kDa. This region, when driven by the HCMV enhancer, could independently stimulate gene expression from E2CAT to a high level. A plasmid with the HCMV enhancer upstream of exons, that could code for the HCMV IE2 proteins of 48 and 51 kDa, as well as 27- and 30-kDa proteins, also stimulated E2CAT expression but at a lower level. The activity of this plasmid was augmented by the IE1 gene product, despite the fact that the latter gene product alone was inactive. It is proposed that the HCMV IE region 2 gene products are involved in the regulation of viral or host cell promoters either independently or in combination with other HCMV IE proteins.  相似文献   

4.
5.
6.
7.
8.
9.
10.
We have developed a system to study human cytomegalovirus (HCMV) cis-acting promoter elements within the context of the viral genome. A recombinant HCMV (RV134) containing a marker gene (beta-glucuronidase) was used to insert HCMV promoter-chloramphenicol acetyltransferase gene constructs into the viral genome between open reading frames US9 and US10. Using this system, we have studied the promoters for the early DNA polymerase gene (UL54), the early-late lower matrix phosphoprotein gene (pp65, UL83), and the true late 28-kDa structural phosphoprotein gene (pp28, UL99). Transient-expression assays demonstrated that the pp65 and pp28 promoters are activated earlier and to higher levels than typically observed with the endogenous gene. In contrast, insertion of these promoters into the viral genome resulted in kinetics which mimicked that of the endogenous genes. In addition, we have also tested a variant of the pp28 promoter (d24/26CAT) which is deleted from -609 to -41. This promoter behaved similarly to the wild-type pp28 promoter, indicating that sequences from -40 to +106 are sufficient for conferring true late kinetics. Taken together, these data demonstrate that the viral genome affords a level of regulation on HCMV gene expression that has been previously unrealized. Therefore, these experiments provide a model system for the analysis of cis-acting promoter regulatory elements in the context of the viral genome.  相似文献   

11.
12.
13.
14.
We have mapped the mutation responsible for the temperature-sensitive (ts) phenotype of tsB821, a mutant of the baculovirus Autographa californica nuclear polyhedrosis virus (H. H. Lee and L. K. Miller, J. Virol. 31:240-252, 1979), to a single nucleotide which changes alanine 432 of the multifunctional regulatory protein IE-1 to a valine. Mapping was done with a combination of marker rescue and transient expression assays, hybrid gene construction by overlap PCR gene splicing, and nucleotide sequence analysis. Cells infected with tsB821 at high multiplicities of infection showed a spectrum of responses from severe cytopathic effects, including apoptosis, to a lack of obvious signs of infection. Protein synthesis in tsB821-infected cells at the restrictive temperature appeared similar to uninfected cell protein synthesis, but viral DNA replication and budded virus production were observed, albeit in a delayed manner. The dependence of early and late promoter activity on the wild-type IE-1 gene, ie-1, was observed in transient expression assays. However, the dependence of early promoter activity on ie-1 was strongest in the absence of other viral genes. Thus, other viral genes appear to be able to compensate, at least in part, for the lack, or low levels, of ie-1 in transient expression assays using early promoters. The mutant should prove useful in further defining the function(s) of IE-1.  相似文献   

15.
16.
The human cytomegalovirus (HCMV) DNA polymerase gene (UL54; also called pol) is a prototypical early gene in that expression is mandatory for viral DNA replication. Recently, we have identified the major regulatory element in the UL54 promoter responsive to the major immediate early (MIE) proteins (UL122 and UL123) (J.A. Kerry, M.A. Priddy, and R. M. Stenberg, J. Virol. 68:4167-4176, 1994). Mutation of this element, inverted repeat sequence 1 (IR1), abrogates binding of cellular proteins to the UL54 promoter and reduces promoter activity in response to viral proteins in transient-transfection assays. To extend our studies on the UL54 promoter, we aimed to examine the role of IR1 in UL54 regulation throughout the course of infection. These studies show that viral proteins in addition to the MIE proteins can activate the UL54 promoter. Proteins from UL112-113 and IRS1/TRS1, recently identified as essential loci for transient complementation of HCMV oriLyt-dependent DNA replication, were found to function as transactivators of the UL54 promoter in association with MIE proteins. UL112-113 enhanced UL54 promoter activation by MIE proteins three- to fourfold. Constitutive expression of UL112-113 demonstrated that the MIE protein dependence of UL112-113 transactivational activity was not related to activation of cognate promoter sequences, suggesting that UL112-113 proteins function in cooperation with the MIE proteins. Mutation of IR1 was found to abrogate stimulation of the UL54 promoter by UL112-113, suggesting that this element is also involved in UL112-113 stimulatory activity. These results demonstrate that additional viral proteins influence UL54 promoter expression in transient-transfection assays via the IR1 element. To confirm the biological relevance of IR1 in regulating UL54 promoter activity during viral infection, a recombinant virus construct containing the UL54 promoter with a mutated IR1 element regulating expression of the chloramphenicol acetyltransferase (CAT) reporter gene (RVIRmCAT) was generated. Analysis of RVIRmCAT revealed that mutation of IR1 dramatically reduces UL54 promoter activity at early times after infection. However, at late times after infection CAT expression by RVIRmCAT, as assessed by RNA and protein levels, was approximately equivalent to expression by wild-type RVpolCAT. These data demonstrate IR1-independent regulation of the UL54 promoter at late times after infection. Together these results show that multiple regulatory events affect UL54 promoter expression during the course of infection.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号