首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The complete nucleotide sequence of a 2296-bp DNA fragment containing the yeast (Saccharomyces cerevisiae) ARG4 gene has been determined. This gene specifies the synthesis of the arginine biosynthetic enzyme, argininosuccinate lyase (EC 4.3.2.1). The sequence contains one major open reading frame of 463 codons, giving a calculated Mr of 52010 for the protein, in good agreement with the experimentally determined value of 53 000. The sequence upstream from the ARG4 gene shares structural features in common with other yeast genes subject to general amino acid control.  相似文献   

3.
The OGG1 gene encodes a highly conserved DNA glycosylase that repairs oxidized guanines in DNA. We have investigated the in vivo function of the Ogg1 protein in yeast mitochondria. We demonstrate that inactivation of ogg1 leads to at least a 2-fold increase in production of spontaneous mitochondrial mutants compared with wild-type. Using green fluorescent protein (GFP) we show that a GFP–Ogg1 fusion protein is transported to mitochondria. However, deletion of the first 11 amino acids from the N-terminus abolishes the transport of the GFP–Ogg1 fusion protein into the mitochondria. This analysis indicates that the N-terminus of Ogg1 contains the mitochondrial localization signal. We provide evidence that both yeast and human Ogg1 proteins protect the mitochondrial genome from spontaneous, as well as induced, oxidative damage. Genetic analyses revealed that the combined inactivation of OGG1 and OGG2 [encoding an isoform of the Ogg1 protein, also known as endonuclease three-like glycosylase I (Ntg1)] leads to suppression of spontaneously arising mutations in the mitochondrial genome when compared with the ogg1 single mutant or the wild-type. Together, these studies provide in vivo evidence for the repair of oxidative lesions in the mitochondrial genome by human and yeast Ogg1 proteins. Our study also identifies Ogg2 as a suppressor of oxidative mutagenesis in mitochondria.  相似文献   

4.
Mobile introns and inteins self-propagate by ‘homing’, a gene conversion process initiated by site-specific homing endonucleases. The VMA intein, which encodes the PI-SceI endonuclease in Saccharomyces cerevisiae, is present in several different yeast strains. Surprisingly, a wild wine yeast (DH1-1A) contains not only the intein+ allele, but also an inteinless allele that has not undergone gene conversion. To elucidate how these two alleles co-exist, we characterized the endonuclease encoded by the DH1-1A intein+ allele and the target site in the intein allele. Sequence analysis reveals seven mutations in the 31 bp recognition sequence, none of which occurs at positions that are individually critical for activity. However, binding and cleavage of the sequence by PI-SceI is reduced 10-fold compared to the S.cerevisiae target. The PI-SceI analog encoded by the DH1-1A intein+ allele contains 11 mutations at residues in the endonuclease and protein splicing domains. None affects protein splicing, but one, a R417Q substitution, accounts for most of the decrease in DNA cleavage and DNA binding activity of the DH1-1A protein. Loss of activity in the DH1-1A endonuclease and target site provides one explanation for co-existence of the intein+ and intein alleles.  相似文献   

5.
A gene (VRP1) encoding a novel proline-rich protein (verprolin) has been isolated from the yeast Saccharomyces cerevisiae as a result of its hybridization to a chick vinculin cDNA probe. The deduced protein sequence contains 24% proline residues present as proline-rich motifs throughout the verprolin sequence. Several of these motifs resemble recently identified sequences shown to bind Src homology 3 (SH3) domains in vitro. Replacement of the wild-type VRP1 allele with a mutant allele results in strains that grow slower than wild-type strains and are temperature sensitive. The vrp1 mutants are impaired in both cell shape and size and display aberrant chitin and actin localization. We propose that verprolin is involved in the maintenance of the yeast actin cytoskeleton, through interactions with other proteins, possibly containing SH3 domains.  相似文献   

6.
The fission yeast (Schizosaccharomyces pombe) taz1 gene encodes a telomere-associated protein. It contains a single copy of a Myb-like motif termed the telobox that is also found in the human telomere binding proteins TRF1 and TRF2, and Tbf1p, a protein that binds to sequences found within the sub-telomeric regions of budding yeast (Saccharomyces cerevisiae) chromosomes. Taz1p was synthesised in vitro and shown to bind to a fission yeast telomeric DNA fragment in a sequence specific manner that required the telobox motif. Like the mammalian TRF proteins, Taz1p bound to DNA as a preformed homodimer. The isolated Myb-like domain was also capable of sequence specific DNA binding, although with less specificity than the full-length dimer. Surprisingly, a protein extract produced from a taz1–fission yeast strain still contained the major telomere binding activity (complex I) we have characterised previously, suggesting that there could be other abundant telomere binding proteins in fission yeast. One candidate, SpX, was also synthesised in vitro, but despite the presence of two telobox domains, no sequence specific binding to telomeric DNA was detected.  相似文献   

7.
A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H2O2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex.  相似文献   

8.
Mutants of Saccharomyces cerevisiae deficient in mitochondrial aldehyde dehydrogenase (ALDH) activity were isolated by chemical mutagenesis with ethyl methanesulfonate. The mutants were selected by their inability to grow on ethanol as the sole carbon source. The ALDH mutants were distinguished from alcohol dehydrogenase mutants by an aldehyde indicator plate test and by immunoscreening. The ALDH gene was isolated from a yeast genomic DNA library on a 5.7-kb insert of a recombinant DNA plasmid by functional complementation of the aldh mutation in S. cerevisiae. An open reading frame which specifies 533 codons was found within the 2.0-kb BamHI-BstEII fragment in the 5.7-kb genomic insert which can encode a protein with a molecular weight of 58,630. The N-terminal portion of the protein contains many positively charged residues which may serve as a signal sequence that targets the protein to the mitochondria. The amino acid sequence of the proposed mature yeast enzyme shows 30% identity to each of the known ALDH sequences from eukaryotes or prokaryotes. The amino acid residues corresponding to mammalian cysteine 302 and glutamates 268 and 487, implicated to be involved at the active site, were conserved. S. cerevisiae ALDH was found to be localized in the mitochondria as a tetrameric enzyme. Thus, that organelle is responsible for acetaldehyde oxidation, as was found in mammalian liver.  相似文献   

9.
The yeast protein Rrf1p encoded by the FIL1 nuclear gene bears significant sequence similarity to Escherichia coli ribosome recycling factor (RRF). Here, we call FIL1 Ribosome Recycling Factor of yeast, RRF1. Its gene product, Rrf1p, was localized in mitochondria. Deletion of RRF1 leads to a respiratory incompetent phenotype and to instability of the mitochondrial genome (conversion to rho/rho0 cytoplasmic petites). Yeast with intact mitochondria and with deleted genomic RRF1 that harbors a plasmid carrying RRF1 was prepared from spores of heterozygous diploid yeast. Such yeast with a mutated allele of RRF1, rrf1-L209P, grew on a non-fermentable carbon source at 30 but not at 36°C, where mitochondrial but not total protein synthesis was 90% inhibited. We propose that Rrf1p is essential for mitochondrial protein synthesis and acts as a RRF in mitochondria.  相似文献   

10.
The DNA polymerase a enzymes from human, and budding (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are homologous proteins involved in initiation and replication of chromosomal DNA. Sequence comparision of human DNA polymerase α with that of S. cerevisiae and S. pombe shows overall levels of amino acid sequence identity of 32% and 34%, respectively. We report here that, despite the sequence conservation among these three enzymes, functionally active human DNA polymerase a fails to rescue several different conditional lethal alleles of the budding yeast POL1 gene at nonpermissive temperature. Furthermore, human DNA polymerase α cannot complement a null allele of budding yeast POL1 either in germinating spores or in vegetatively growing cells. In fission yeast, functionally active human DNA polymerase α is also unable to complement the disrupted polα::ura4 + allele in germinating spores. Thus, in vivo, DNA polymerase α has stringent species specificity for initiation and replication of chromosomal DNA.  相似文献   

11.
《Gene》1997,185(1):147-152
We report the sequence of a 4.5-kb cDNA clone isolated from a human melanoma library which bears high amino acid sequence identity to the yeast mitochondrial (mt) DNA polymerase (Mip1p). This cDNA contains a 3720-bp open reading frame encoding a predicted 140-kDa polypeptide that is 43% identical to Mip1p. The N-terminal part of the sequence contains a 13 glutamine stretch encoded by a CAG trinucleotide repeat which is not found in the other DNA polymerases γ (Pol γ). Multiple amino acid sequence alignments with Pol γ from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, Drosophila melanogaster, Xenopus laevis and Mus musculus show that these DNA polymerases form a family strongly conserved from yeast to man and are only loosely related to the Family A DNA polymerases.  相似文献   

12.
13.
A genetic approach to the molecular cloning of frameshift suppressor genes from yeast is described. These suppressors act by suppressing +1 G:C base-pair insertion mutations in glycine or proline codons. The cloning regimen involves an indirect screen for yeast transformants which harbor a functional suppressor gene inserted into the autonomously replicating “shuttle” vector YEp13, followed by transfer of the hybrid plasmid from yeast into Escherichia coli. Using this procedure a 10.7-kb DNA fragment carrying the SUF2 frameshift suppressor gene has been isolated. This suppressor acts specifically on +1 G:C insertions in proline codons. When inserted into an integrative vehicle and reintroduced into yeast by transformation, this fragment integrates by homologous recombination in the region of the SUF2 locus on chromosome III. A large proportion of the fragment overlaps with another cloned DNA segment which carries the closely linked CDC10 gene. The SUF2 fragment carries at least two tRNA genes. The SUF2 gene and one of the tRNA genes are located on a 0.85-kb restriction fragment within the 10.7-kb segment. A method is also described for the isolation of DNA fragments carrying alternative alleles of the SUF2 locus. Using this procedure, the wild-type suf2+ allele has been cloned.  相似文献   

14.
The nuclear suppressor allele NSM3 in strain FF1210-6C/170-E22 (E22), which suppresses a mutation of the yeast mitochondrial tRNAAsp gene in Saccharomyces cerevisiae, was cloned and identified. To isolate the NSM3 allele, a genomic DNA library using the vector YEp13 was constructed from strain E22. Nine YEp13 recombinant plasmids were isolated and shown to suppress the mutation in the mitochondrial tRNAAsp gene. These nine plasmids carry a common 4.5-kb chromosomal DNA fragment which contains an open reading frame coding for yeast mitochondrial aspartyl-tRNA synthetase (AspRS) on the basis of its sequence identity to the MSD1 gene. The comparison of NSM3 DNA sequences between the suppressor and the wild-type version, cloned from the parental strain FF1210-6C/170, revealed a G to A transition that causes the replacement of amino acid serine (AGU) by an asparagine (AAU) at position 388. In experiments switching restriction fragments between the wild type and suppressor versions of the NSM3 gene, the rescue of respiratory deficiency was demonstrated only when the substitution was present in the construct. We conclude that the base substitution causes the respiratory rescue and discuss the possible mechanism as one which enhances interaction between the mutated tRNAAsp and the suppressor version of AspRS.  相似文献   

15.
Ashbya gossypii carries only a single gene (TEF) coding for the abundant translation elongation factor 1α. Cloning and sequencing of this gene and deletion analysis of the promoter region revealed an extremely high degree of similarity with the well studied TEF genes of the yeast Saccharomyces cerevisiae including promoter upstream activation sequence (UAS) elements. The open reading frames in both species are 458 codons long and show 88.6% identity at the DNA level and 93.7% identity at the protein level. A short DNA segment in the promoter, between nucleotides -268 and -213 upstream of the ATG start codon, is essential for high-level expression of the A. gossypii TEF gene. It carries two sequences, GCCCATACAT and ATCCATACAT, with high homology to the UASrpg sequence of S. cerevisiae, which is an essential promoter element in genes coding for highly expressed components of the translational apparatus. UASrpg sequences are binding sites for the S. cerevisiae protein TUF, also called RAP1 or GRF1. In gel retardation with A. gossypii protein extracts we demonstrated specific protein binding to the short TEF promoter segment carrying the UASrpg homologous sequences.  相似文献   

16.
17.
R A Butow  H Zhu  P Perlman  H Conrad-Webb 《Génome》1989,31(2):757-760
All mRNAs on the yeast mitochondrial genome terminate at a conserved dodecamer sequence 5'-AAUAAUAUUCUU-3'. We have characterized two mutants with altered dodecamers. One contains a deletion of the dodecamer at the end of the var1 gene, and the other contains two adjacent transversions in the dodecamer at the end of the reading frame of fit1, a gene within the omega+ allele of the 21S rRNA gene. In each mutant, expression of the respective gene is blocked completely. A dominant nuclear suppressor, SUV3-1, was isolated that suppresses the var1 deletion but is without effect on the fit1 dodecamer mutations. Unexpectedly, however, we found that SUV3-1 blocks expression of the wild-type fit1 allele by blocking processing at its dodecamer. SUV3-1 has pleiotropic effects on mitochondrial gene expression, affecting RNA processing, RNA stability, and translation. Our results suggest that RNA metabolism and translation may be part of a multicomponent complex within mitochondria.  相似文献   

18.
The binding of antimycin was studied in several mutant strains of yeast that have specific defects in cytochrome b. The strains have mutations in a part of the mitochondrial DNA that contains the structural gene for the apoprotein of cytochome b. Two of the mutants lack this protein and have no spectral cytochrome b. These mutants also lack the strong antimycin-binding site that is present in wild-type yeast mitochondria in the ratio of one site per two cytochrome b molecules. A third mutant which contains normal levels of spectral cytochrome b, but shows an altered absorption maximum for cytochrome b at 77 °K, was found to bind normal amounts of antimycin. However, the fluorescence of antimycin bound to mitochondria of this strain was found to be less efficiently quenched than in the case of the wild-type strain. In another mutant which contains only 20% of the normal spectral level of cytochrome b, the number of antimycin-binding sites was proportionately less. In an antimycin-resistant mutant, the binding of antimycin was too weak to be detected. The simultaneous modification of the structure of cytochrome b and the alteration of the antimycin-binding site in these mutants suggests that the antimycin-binding site is located on the apoprotein of cytochrome b.  相似文献   

19.
The Saccharomyces cerevisiae Tgl2 protein shows sequence homology to Pseudomonas triacylglycerol (TAG) lipases, but its role in the yeast lipid metabolism is not known. Using hemagglutinin-tagged Tgl2p purified from yeast, we report that this protein carries a significant lipolytic activity toward long-chain TAG. Importantly, mutant hemagglutinin-Tgl2pS144A, which contains alanine 144 in place of serine 144 in the lipase consensus sequence (G/A)XSXG exhibits no such activity. Although cellular TAG hydrolysis is reduced in the tgl2 deletion mutant, overproduction of Tgl2p in this mutant leads to an increase in TAG degradation in the presence of fatty acid synthesis inhibitor cerulenin, but that of Tgl2pS144A does not. This result demonstrates the lipolytic function of Tgl2p in yeast. Although other yeast TAG lipases are localized to lipid particles, Tgl2p is enriched in the mitochondria. The mitochondrial fraction purified from the TGL2-overexpressing yeast shows a strong lipolytic activity, which was absent in the tgl2 deletion mutant. Therefore, we conclude that Tgl2p is a functional lipase of the yeast mitochondria. By analyzing phenotypic effects of TGL2-deficient yeast, we also find that lipolysis-competent Tgl2p is required for the viability of cells treated with antimitotic drug. The addition of oleic acid, the product of Tgl2p-catalyzed lipolysis, fully complements the antimitotic drug sensitivity of the tgl2 null mutation. Thus, we propose that the mitochondrial Tgl2p-dependent lipolysis is crucial for the survival of cells under antimitotic drug treatment.  相似文献   

20.
GTP-binding proteins such as Ras act as molecular switches in a large number of signal pathways. In this report, we isolated and characterized a novel Ras small monomeric GTPase Rsr1 gene, designated PmRsr1, from yeast-form Penicillium marneffei. The full-length PmRsr1 cDNA sequence is 1,866 bp in size, and contains an open reading frame of 642 bp encoding 213 amino acids. The predicted molecular mass of PmRsr1 is 24.41 kDa with an estimated theoretical isoelectric point of 9.21. The deduced amino acid sequence of PmRsr1 shows 87% identity with that of Aspergillus fumigatus and A. clavatus. Eight exons and seven introns are identified within the 2,102 bp PmRsr1 genomic DNA sequence of P. marneffei. The open reading frame was subcloned into the pcDNA6-myc-His B expression vector, and the recombinant plasmid was transfected into Vero cell line. The expressed fusion protein was analyzed by SDS-PAGE and western blotting. Differential expression of the PmRsr1 was demonstrated by real-time RT-PCR. The expression of PmRsr1 was the highest in the yeast phase comparing with that in the mycelia and conidia phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号