首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abelson murine leukemia virus (A-MuLV) encodes a single protein with tyrosine kinase activity that can transform fibroblast cell lines in vitro and lymphoid target cells in vitro and in vivo. Expression of kinase-active A-MuLV protein can result in a deleterious effect on transformed fibroblast populations, leading to cell death or selection for nonlethal mutants of the virus. These mutants retain expression of the kinase activity but have lost large portions of the carboxy terminus of the Abelson protein. To more precisely map the sequences involved in this lethal effect, we have isolated a series of site-directed deletions from a DNA clone of the P160 wild-type strain of A-MuLV. In addition, a number of unexpected, spontaneous deletions occurring during transfection of NIH 3T3 cells were isolated. These deletions result in expression of carboxy-terminal truncated forms of the A-MuLV protein ranging from 130,000 to 84,000 in molecular weight. Analysis of the transforming and lethal activities of each mutant recovered in its RNA viral form shows that the transformation-essential and lethal-essential sequences do not overlap. These data and our previous work suggest that a function carried by the carboxy-terminal region of the A-MuLV protein acts in cis with the kinase-essential region to mediate the lethal effect.  相似文献   

2.
We obtained a regressing-tumor antiserum specific for the unique sequence of the transforming protein P140 of Fujinami sarcoma virus by injecting Fischer rats with syngeneic embryo cells transformed with Fujinami sarcoma virus. This serum is capable of immunoprecipitating a protein of 98,000 daltons from cell extracts of normal, uninfected chicken bone marrow cells. This normal cellular protein (NCP98) was shown to be structurally related to P140, sharing the majority of 35S-methionine-labeled tryptic peptides with the viral gene product P140. NCP98 is a phosphoprotein in vivo, with an associated in vitro protein kinase activity, capable of phosphorylating specifically at tyrosine residues of NCP98 itself and a-casein, an externally added substrate. This kinase activity is biochemically indistinguishable from the kinase activity associated with P140 by all criteria tested. Moreover, in vitro-phosphorylated NCP98 and P140 shared the same phosphopeptides. The expression of NCP98 is tissue-specific. It is readily detectable in bone marrow cells and detectable to a lesser extent in liver and lung cells from 6–18 day old chickens.  相似文献   

3.
The Abelson murine leukemia virus transforming gene product is a phosphorylated protein encoded by both viral and cellular sequences. This gene product has an amino-terminal region derived from the gag gene of its parent virus and a carboxyl-terminal region of (abl) derived from a normal murine cellular gene. Using a combination of partial proteolytic cleavage techniques and antisera specific for gag and abl sequences, we mapped in vivo phosphorylation sites to different regions of the protein. Phosphoproteins encoded by strain variants and transformation-defective mutants of Abelson murine leukemia virus with defined deletions in the primary sequence of the abl region were compared by two dimensional limit digest peptide mapping. Specific phosphorylation pattern differences for wild-type and mutant proteins probably represented deletions of specific phosphate acceptor sites in the abl region. An in vitro autophosphorylation activity copurified with the Abelson murine leukemia virus protein from transformation-competent strains. A peptide analysis of such in vitro reactions demonstrated that these phosphorylation sites were restricted to the amino-terminal region, and the specific sites appeared to be unrelated to the sites found on proteins phosphorylated in vivo. Thus, the autophosphorylation reaction probably correlates with an activity important in transformation, but the specific end product in vitro bears little resemblance to its function in vivo.  相似文献   

4.
Four phenotypically normal mink cell clones, each containing a transformation-defective provirus of the Snyder-Theilen strain of feline sarcoma virus (ST-FeSV), synthesized an 85,000-dalton viral polyprotein (P85) indistinguishable in size and antigenic complexity from that encoded by wild-type transforming ST-FeSV. An additional transformation-defective, ST-FeSV-containing flat cell clone produced a polyprotein of 88,000 daltons (P88). The viral polyproteins immunoprecipitated from cytoplasmic extracts of these cells lacked the tyrosine-specific protein kinase activity associated with the wild-type ST-FeSV gene product. In addition, the products encoded by representative transformation-defective ST-FeSV genomes were poorly phosphorylated in vivo and lacked detectable phosphotyrosine residues. Whereas proteins of ST-FeSV transformants contained elevated levels of phosphotyrosine, those of mink cells containing transformation-defective ST-FeSV exhibited phosphotyrosine levels no higher than those found in uninfected cells. These findings provide genetic evidence that the tyrosine-specific protein kinase activity associated with ST-FeSV P85 is required for virus-induced transformation.  相似文献   

5.
Abelson murine leukemia virus (A-MuLV) encodes a single protein product, a tyrosine-specific protein kinase, whose activity is necessary for cell transformation by this retrovirus. Using a defined medium culture system, we demonstrate that transformation of NIH 3T3 fibroblasts by A-MuLV abrogates their normal requirement for platelet-derived growth factor (PDGF) for cell growth. Analysis of constructed insertional mutant viruses revealed an absolute correlation between A-MuLV-encoded tyrosine kinase activity and PDGF-independent fibroblast growth. Sequences of the provirus not required for kinase activity appeared unnecessary for abrogating the fibroblast requirement for PDGF. Conversely, sequences required for kinase activity appeared necessary, suggesting that induction of PDGF-independent fibroblast growth, like cell transformation, is a function of this tyrosine kinase. Fibroblasts transformed by a partially transformation-defective mutant demonstrated incomplete morphological transformation but were still independent of PDGF for growth. Thus, the processes of full morphological transformation and growth factor independence can be partially dissociated.  相似文献   

6.
S P Goff  E Gilboa  O N Witte  D Baltimore 《Cell》1980,22(3):777-785
Circular double-stranded DNA produced after infection of mouse cells with Abelson murine leukemia virus (A-MuLV) was isolated and cloned in the phage vector Charon 21A. The resulting clones of the A-MuLV genome show homology to the ends of Moloney MuLV and to a 3.5 kb central region containing sequences unique to Abelson virus. A 2.3 kb restriction fragment containing only A-MuLV-specific sequences was subcloned in the plasmid vector pBR322 and used as a probe for the cellular gene that had been acquired by the virus. DNA from all inbred mouse lines examined contains an identical region of homology spread out over 11 to 20 kb. The cellular gene contains intervening sequences which are lacking in the viral genome. Rat, Chinese hamster, rabbit, chicken and human DNA also show homology to the viral probe.  相似文献   

7.
A library of Abelson murine leukemia virus (A-MuLV) proviral DNAs with 12- or 6-base-pair (bp) insertional mutations was constructed. The 29 mutations characterized spanned the entire protein-coding region of the provirus. We tested the effects of these mutations both on the kinase activity of the gag-abl fusion protein encoded by the provirus and on the ability of the provirus to transform NIH 3T3 fibroblasts. To simplify assessment of the mutant kinases, we expressed the A-MuLV-encoded kinase in the bacterial expression vector pATH2, resulting in production of a trpE-gag-abl fusion protein in Escherichia coli. We used an immunoprecipitation kinase assay to measure both autophosphorylation and artificial substrate phosphorylation by the mutant kinases. To assay transformation ability of the mutant proviruses, we transfected NIH 3T3 fibroblasts with the mutants and with helper virus (Moloney MuLV) by the DEAE-dextran method. Our analysis of these A-MuLV insertional mutants allows the division of the protein-coding region of the provirus into four domains: domain A (proviral bp 1068 to 1685), in which insertions have no effect on the bacterially expressed kinase, but diminish both kinase activity and transformation efficiency in fibroblasts; domain B (bp 1750 to 2078), in which insertions have no effect on the provirus; domain C (bp 2181 to 2878), the critical kinase domain, in which 12-bp or even 6-bp insertions completely inactivate the A-MuLV kinase and result in transformation-defective proviruses; and domain D (bp 2956 to 4610), the large C-terminal domain in which mutations are silent.  相似文献   

8.
Lymphomas induced by the Abelson murine leukemia virus (A-MuLV) were examined for the expression of biochemical and biological markers associated with A-MuLV transformation before and after in vivo growth in genetically distinguishable host mice. Although all tumors and clonal lines derived from them initially expressed the A-MuLV-encoded gag fusion protein p160, they ceased synthesis of this molecule after several weeks of growth in vivo as ascites tumors. Transplanted clonal lines continued to express the alloantigenic marker H-2b and the isoenzyme marker Gpi-1b of the donor tumor cells, indicating that the cells were of donor and not host origin. Examination of cellular DNA obtained from p160-positive and derivative p160-negative lines indicated that p160-negative clones had lost A-MuLV-specific proviral sequences as detected by hybridization with several probes. Although the clonal lines no longer expressed p160, they retained their malignant phenotype and continued to express the Abelson antigen, a cell surface marker associated with A-MuLV lymphomagenesis. Continued expression of the A-MuLV genome was not required for maintenance of oncogenic potential under these conditions of in vivo tumor growth.  相似文献   

9.
F C Purves  D Spector    B Roizman 《Journal of virology》1991,65(11):5757-5764
Earlier studies have shown that a herpes simplex virus 1 (HSV-1) open reading frame, US3, encodes a novel protein kinase and have characterized the cognate amino acid sequence which is phosphorylated by this enzyme. This report identifies an apparently essential viral phosphoprotein whose posttranslational processing involves the viral protein kinase. Analyses of viral proteins phosphorylated in the course of productive infection revealed a phosphoprotein whose mobility was viral protein kinase and serotype dependent. Thus, the corresponding HSV-1 and HSV-2 phosphoproteins differ in their electrophoretic mobilities, and the phosphoprotein specified by the HSV-1 mutant deleted in US3 (R7041) differs from that of the corresponding HSV-1 and HSV-2 proteins. Analyses of HSV-1 x HSV-2 recombinants mapped the phosphoprotein between 0.42 and 0.47 map units on the prototype HSV-1 DNA map. Within this region, the UL34 open reading frame was predicted to encode a protein of appropriate molecular weight which would also contain the consensus target site for phosphorylation by the viral protein kinase as previously defined with synthetic peptides. Replacement of the native UL34 gene with a UL34 gene tagged with a 17-amino-acid epitope from the alpha 4 protein identified this gene as encoding the phosphoprotein. Finally, mutagenesis of the predicted phosphorylation site on UL34 in the viral genome, and specifically the substitution of threonine or serine with alanine in the product of the UL34 gene, yielded phosphoproteins whose electrophoretic mobilities could not be differentiated from that of the US3- mutant. We conclude that the posttranslational processing of the UL34 gene product to its wild-type phenotype requires the participation of the viral protein kinase. While the viral protein kinase is not essential for viral replication in cells in culture, the UL34 gene product itself may not be dispensable.  相似文献   

10.
Phosphorylation of Vesicular Stomatitis Virus In Vivo and In Vitro   总被引:20,自引:16,他引:4  
The structural protein, NS, of purified vesicular stomatitis virus (VSV) is a phosphoprotein. In infected cells phosphorylated NS is found both free in the cytoplasm and as part of the viral ribonucleoprotein (RNP) complex containing both the 42S RNA and the structural proteins L, N, and NS, indicating that phosphorylation occurs as an early event in viral maturation. VSV contains an endogenous protein kinase activity, probably of host region, which catalyzes the in vitro phosphorylation of the viral proteins NS, M, and L, but not of N or G. The phosphorylated sites on NS appear to be different in the in vivo and in vitro reactions, and are differentially sensitive to alkaline phosphatase. After removal of the membrane components of purified VSV with a dextran-polyethylene glycol two-phase separation, the kinase activity remains tightly associated with the viral RNP. However, viral RNP isolated from infected cells shows only a small amount of kinase activity. The protein kinase enzyme appears to be a cellular contaminant of purified VSV because an activity from the uninfected cell extract can phosphorylate in vitro the dissociated viral proteins NS and M. The virion-associated activity may be derived either from the cytoplasm or the plasma membrane of the host cell since both of these cellular components contain protein kinase activity similar to that found in purified VSV.  相似文献   

11.
12.
A number of strains of Abelson murine leukemia virus (A-MuLV) with various abilities to transform cells have been identified. Among these is the A-MuLV-P90 strain, a mutant derived from A-MuLV-P120 that encodes an A-MuLV protein missing sequences that are normally present at the extreme carboxy terminus of P120 (N. Rosenberg and O. N. Witte, J. Virol. 33:340-348, 1980). This virus transforms NIH 3T3 cells efficiently but does not transform a high frequency of lymphoid cells in vitro or in vivo. In this communication, we show that of the relatively few tumors induced by A-MuLV-P90 nearly all contained new variant viruses that stably expressed either larger or smaller A-MuLV proteins. Strains that expressed larger A-MuLV proteins behaved like A-MuLV-P120 in transformation assays, whereas those expressing smaller A-MuLV proteins induced a high frequency of tumors after a short latent period in vivo but failed to transform large numbers of lymphoid cells in vitro. Thus, these latter viruses separated the requirements for in vitro transformation of lymphoid cells from those for tumor induction. All of the variants differed from A-MuLV-P90 in the carboxy-terminal region of the A-MuLV protein, suggesting that sequences in this region play a key role in the ability of the virus to interact with hematopoietic cells in vivo and in vitro.  相似文献   

13.
Drosophila Enabled (Ena) is a member of a family of cytoskeleton-associated proteins including mammalian vasodilator-stimulated phosphoprotein and murine Enabled that regulate actin cytoskeleton assembly. Mutations in Drosophila ena were discovered as dominant genetic suppressors of mutations in the Abelson tyrosine kinase (Abl), suggesting that Ena and Abl function in the same pathway or process. We have identified six tyrosine residues on Ena that are phosphorylated by Abl in vitro and in vivo. Mutation of these phosphorylation sites to phenylalanine partially impaired the ability of Ena to restore viability to ena mutant animals, indicating that phosphorylation is required for optimal Ena function. Phosphorylation of Ena by Abl inhibited the binding of Ena to SH3 domains in vitro, suggesting that one effect of Ena phosphorylation may be to modulate its association with other proteins.  相似文献   

14.
Abelson murine leukemia virus (A-MuLV) is an acute transforming retrovirus that preferentially transforms early B-lineage cells both in vivo and in vitro. Its transforming protein, v-Abl, is a tyrosine kinase related to v-Src but containing an extended C-terminal domain. Many mutations affecting the C-terminal portion of the molecule block the pre-B-transforming activity of v-Abl without affecting the fibroblast-transforming ability. In this study we have determined the abilities of both wild-type and C-terminally truncated (p90) forms of v-Abl to transform cells from p53(-/-) mice. Lack of p53 increases the susceptibility of bone marrow cells to transformation by v-Abl by a factor of more than 7 but does not alter v-Abl's preference for B220(+) IgM(-) pre-B cells. p53-deficient mice have earlier tumor onset, more rapid tumor progression, and decreased survival time following A-MuLV infection, but all of the tumors are pre-B lymphomas. Thus, p53-dependent pathways inhibit v-Abl transformation but play no role in conferring preferential transformation of pre-B cells. Surprisingly, the C-terminally truncated form of v-Abl (p90) transforms pre-B cells very efficiently in mice lacking p53, thus demonstrating that the C terminus of v-Abl does not determine preB tropism but is necessary to overcome p53-dependent inhibition of transformation.  相似文献   

15.
We have prepared full-length DNA clones of the Abelson murine leukemia virus (A-MuLV) genome. A specific probe homologous to the central portion of the A-MuLV genome was prepared by nick translation of a subcloned restriction fraction from the cloned DNA. The probe was used to examine the genome structure of several A-MuLV variants. The conclusions are: (i) three viruses coding for Abelson-specific proteins of molecular weight 120,000, 100,000, and 90,000 had genomes indistinguishable in size, suggesting that the shorter proteins are the result of early translational termination; (ii) compared with the genome encoding the 120,000-dalton (120K) protein, a genome coding for a 160K protein was 0.8 kilobase larger in the A-MuLV-specific region; and (iii) a genome coding for a 92K protein had a 700-base pair deletion internal to the coding region. This mutant was transformation defective: its 92K protein lacked the protein kinase activity normally associated with the A-MuLV protein, and cells containing the virus were not morphologically transformed. In addition, we determined the number of A-MuLV proviruses in each of several transformed fibroblast and lymphoid cells prepared by infection in vitro. These experiments show that a single copy of the A-MuLV provirus is sufficient to transform both types of cells and that nonproducer cells generally have only one integrated provirus.  相似文献   

16.
Growth factor receptors are typically activated by the binding of soluble ligands to the extracellular domain of the receptor, but certain viral transmembrane proteins can induce growth factor receptor activation by binding to the receptor transmembrane domain. For example, homodimers of the transmembrane 44-amino acid bovine papillomavirus E5 protein bind the transmembrane region of the PDGF beta receptor tyrosine kinase, causing receptor dimerization, phosphorylation, and cell transformation. To determine whether it is possible to select novel biologically active transmembrane proteins that can activate growth factor receptors, we constructed and identified small proteins with random hydrophobic transmembrane domains that can bind and activate the PDGF beta receptor. Remarkably, cell transformation was induced by approximately 10% of the clones in a library in which 15 transmembrane amino acid residues of the E5 protein were replaced with random hydrophobic sequences. The transformation-competent transmembrane proteins formed dimers and stably bound and activated the PDGF beta receptor. Genetic studies demonstrated that the biological activity of the transformation-competent proteins depended on specific interactions with the transmembrane domain of the PDGF beta receptor. A consensus sequence distinct from the wild-type E5 sequence was identified that restored transforming activity to a non-transforming poly-leucine transmembrane sequence, indicating that divergent transmembrane sequence motifs can activate the PDGF beta receptor. Molecular modeling suggested that diverse transforming sequences shared similar protein structure, including the same homodimer interface as the wild-type E5 protein. These experiments have identified novel proteins with transmembrane sequences distinct from the E5 protein that can activate the PDGF beta receptor and transform cells. More generally, this approach may allow the creation and identification of small proteins that modulate the activity of a variety of cellular transmembrane proteins.  相似文献   

17.
18.
Abelson murine leukemia virus (A-MuLV) is a replication-defective virus that transforms both fibroblasts and hematopoietic cells in vitro. The virus encodes a 120,000-molecular-weight protein (P120) that is composed of Moloney murine leukemia virus-derived gag gene sequences and A-MuLV--specific sequences. This protein is the only A-MuLV--encoded protein that has been detected, and thus P120 is a candidate for the transforming protein of A-MuLV. We now report isolation and characterization of three new A-MuLV isolates that do not synthesize P120 but do produce analogous proteins of larger (160,000 molecular weight) and smaller (100,000 and 90,000 molecular weight) size. All of these A-MuLV isolates transform fibroblasts and lymphoid cells in vitro. Because the different A-MuLV proteins vary in the A-MuLV--specific region of the molecule, these variants may set a maximum limit on the size of the A-MuLV transforming protein.  相似文献   

19.
Molecular events in cells transformed by Rous Sarcoma virus   总被引:20,自引:5,他引:15       下载免费PDF全文
The Rous sarcoma virus (RSV) transforming gene product has been identified and characterized as a phosphoprotein with a molecular weight of 60,000, denoted pp60src. Partially purified pp60src displays a closely associated phosphotransferase activity with the unusual specificity of phosphorylating tyrosine residues in a variety of proteins. That the enzymatic activity observed is actually encoded by the RSV-transforming gene is indicated by the comparison of the pp60src- protein kinase isolated from cells tranformed by a wild-type RSV or by a RSV temperature-sensitive transformation mutant; these experiments revealed that the latter enzyme had a half-life of 3 min at 41 degrees C, whereas that of the wild-type enzyme was 20 min. Evidence is now beginning to accumulate showing that viral pp60src expresses its protein kinase activity in transformed cells as well as in vitro because at least one cellular protein has been identified as a substrate for this activity of pp60src. Although the protein kinase activity associated with pp60src is itself cyclic AMP (cAMP) independent, the molecule contains at least one serine residue that is directly phosphorylated by the cellular cAMP-dependent protein kinase, thus suggesting that the viral transforming gene product may be regulated indirectly by the level of cAMP. The significance of this latter observation must be regarded from the point of view that the RSV src gene is apparently derived from a normal cellular gene that seemingly expresses in normal uninfected cells a phosphoprotein structurally and functionally closely related to pp60src. This celluar protein, found in all vertebrate species tested, also is a substrate for a cAMP-dependent protein kinase of normal cells, and, therefore, may be evolved to function in a regulatory circuit involving cAMP.  相似文献   

20.
Five different types of protein kinase activities have been evaluated in cell lines from murine lymphomas induced by Abelson leukemia virus (A-MuLV), whose oncogene codes for a tyrosine protein kinase. Such activities were compared with those of normal cells and of cells transformed by Moloney leukemia virus (M-MuLV), lacking oncogene sequences in its genome. While cAMP-dependent protein kinase and casein kinase-1 do not undergo significant changes, casein kinase-2 rises in both A-MuLV and M-MuLV infected lymphocytes, becoming largely associated with the particulate fraction of transformed cells. Protein kinase-C on the other hand is unchanged in M-MuLV transformed cells but it undergoes a 2-3-fold increment in both soluble and particulate fractions of A-MuLV transformed lymphocytes, which also display high tyrosine protein kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号