首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid dysgenesis-induced response to selection in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, the P-M and I-R systems of hybrid dysgenesis are associated with high rates of transposition of P and I elements, respectively, in the germlines of dysgenic hybrids formed by crossing females of strains without active elements to males of strains containing them. Transposition rates are not markedly accelerated in the reciprocal, nondysgenic hybrids. Previous attempts to evaluate the extent to which hybrid dysgenesis-mediated P transposition contributes to mutational variance for quantitative characters by comparing the responses to selection of P-M dysgenic and nondysgenic hybrids have given variable results. This experimental design has been extended to include an additional quantitative trait and the I-R hybrid dysgenesis system. The selection responses of lines founded from both dysgenic and nondysgenic crosses showed features that would be expected from the increase in frequency of initially rare genes with major effects on the selected traits. These results differ from those of previous experiments which showed additional selection response only in lines started from dysgenic crosses, and can be explained by the occasional occurrence of large effect transposable element-induced polygenic mutations in both dysgenic and nondysgenic selection lines. High rates of transposition in populations founded from nondysgenic crosses may account for the apparently contradictory results of the earlier selection experiments, and an explanation is proposed for its occurrence.  相似文献   

2.
A Hybrid Dysgenesis Syndrome in Drosophila Virilis   总被引:3,自引:1,他引:2       下载免费PDF全文
A new example of ``hybrid dysgenesis' has been demonstrated in the F(1) progeny of crosses between two different strains of Drosophila virilis. The dysgenic traits were observed only in hybrids obtained when wild-type females (of the Batumi strain 9 from Georgia, USSR) were crossed to males from a marker strain (the long-established laboratory strain, strain 160, carrying recessive markers on all its autosomes). The phenomena observed include high frequencies of male and female sterility, male recombination, chromosomal nondisjunction, transmission ratio distortion and the appearance of numerous visible mutations at different loci in the progeny of dysgenic crosses. The sterility demonstrated in the present study is similar to that of P-M dysgenesis in Drosophila melanogaster and apparently results from underdevelopment of the gonads in both sexes, this phenomenon being sensitive to developmental temperature. However, in contrast to the P-M and I-R dysgenic systems in D. melanogaster, in D. virilis the highest level of sterility (95-98%) occurs at 23-25°. Several of the mutations isolated from the progeny of dysgenic crosses (e.g., singed) proved to be unstable and reverted to wild type. We hypothesize that a mobile element (``Ulysses') which we have recently isolated from a dysgenically induced white eye mutation may be responsible for the phenomena observed.  相似文献   

3.
An inbred line of the M' strain Muller-5 Birmingham was studied for its abilities to affect P-M hybrid dysgenesis. This strain possesses 57 P elements, all of which are apparently defective in the production of the P transposase. In combination with transposase-producing elements, these nonautonomous elements can enhance or diminish the incidence of hybrid dysgenesis, depending on the trait that is studied. Dysgenic flies that have one or more paternally-derived chromosomes with these elements partially repress the instability of the P element insertion mutation, snw; however, such flies have elevated frequencies of another dysgenic trait, GD sterility, and also show distorted segregation ratios. An explanation is presented in which all of these phenomena are unified as manifestations of the kinetics of P element activation in the germ line. The progeny of Muller-5 Birmingham females exhibit partial repression of both snw instability and GD sterility. This repression appears to involve a factor that can be transmitted maternally through at least two generations. This mode of repression therefore conforms to the pattern of inheritance of the P cytotype, the condition that brings about nearly total repression of P element activity in some strains. Models in which this repression could arise from the nonautonomous P elements of Muller-5 Birmingham are discussed.  相似文献   

4.
Summary The Drosophila melanogaster mobile DNA sequences P factors and P elements transpose at elevated rates when P strain males are mated to M strain females in a hybrid dysgenic cross (Engels 1983). Isofemale lines derived from such a cross were analysed by in situ hybridisation using cloned copies of the transposable elements copia, 412 and F. It was found that lines derived from dysgenic crosses showed a statistically significant number of new sites for these elements when compared to a non-dysgenic control cross. This result suggests a functional coupling of copia, 412 and F transposition and some component present in the P-M dysgenic system.  相似文献   

5.
Inbred wild strains of Drosophila melanogaster derived from the central and eastern United States were used to make dysgenic hybrids in the P-M system. These strains possessed P elements and the P cytotype, the condition that represses P element transposition. Their hybrids were studied for the mutability of the P element insertion mutation, snw, and for the incidence of gonadal dysgenesis (GD) sterility. All the strains tested were able to induce hybrid dysgenesis by one or both of these assays; however, high levels of dysgenesis were rare. Sets of X chromosomes and autosomes from the inbred wild strains were more effective at inducing GD sterility than were sets of Y chromosomes and autosomes. In two separate analyses, GD sterility was positively correlated with snw mutability, suggesting a linear relationship. However, one strain appeared to induce too much GD sterility for its level of snw destabilization, indicating an uncoupling of these two manifestations of hybrid dysgenesis.  相似文献   

6.
This paper studies the metabolism of the juvenile hormone, which affects gonads functioning in Drosophila melanogaster females under P-M hybrid dysgenesis. It is shown that dysgenic females grown at 29°C have increased levels of the juvenile hormone (its degradation and stress reactivity are reduced), which apparently is a compensatory response to ovarian hypoplasia.  相似文献   

7.
Hybrid dysgenesis is a condition found in certain interstrain hybrids of Drosophila melanogaster caused by the interaction of chromosomal and cytoplasmic factors. Germ-line abnormalities, including sterility, high mutability and male recombination, appear in the affected individuals. There are at least two distinct systems of hybrid dysgenesis. We examined a Wisconsin wild population in two consecutive years to determine the distribution of the chromosomal P factor and the extrachromosomal M cytotype that together cause one kind of hybrid dysgenic sterility. The P factor was found to be very common in the population, with all three major chromosomes being polymorphic for it. This polymorphism was strongly correlated with variability for male recombination elements, suggesting that these two traits are part of the same system of hybrid dysgenesis. There was a slight tendency for the P factor to be lost in lines taken from this population and inbred in the laboratory for many generations. A large-scale search for the M cytotype, which causes susceptibility to the P factor, showed that it is present in the population at only very low frequencies. Further evidence that the population is mostly immune to the action of the P factor was our finding of a general lack of dysgenic sterility in the wild flies themselves. However, we were able to isolate several wild strains that consistently showed the M cytotype. In some cases, the frequency of the M cytotype could be maintained in these lines, but it could not usually be increased by artificial selection. Some possible consequences of hybrid dysgenesis for the evolutionary biology of Drosophila are suggested.  相似文献   

8.
采用性腺败育(GD不育)作为标准检定方法。对我国20个地方的黑腹果蝇的P因子活性和细胞型进行了测定。结果表明我国北部沿海城市为Q型;南部沿海和内地皆为M型。各地的M品系所产生的GD不育能力各不相同,但表现出与地理位置相关的梯度变化。这一变化规律为研究我国黑腹果蝇的P因子起源及P和M品系的形成提供了重要的理论依据。  相似文献   

9.
Transposons evolve rapidly and can mobilize and trigger genetic instability. Piwi-interacting RNAs (piRNAs) silence these genome pathogens, but it is unclear how the piRNA pathway adapts to invasion of new transposons. In Drosophila, piRNAs are encoded by heterochromatic clusters and maternally deposited in the embryo. Paternally inherited P element transposons thus escape silencing and trigger a hybrid sterility syndrome termed P-M hybrid dysgenesis. We show that P-M hybrid dysgenesis activates both P elements and resident transposons and disrupts the piRNA biogenesis machinery. As dysgenic hybrids age, however, fertility is restored, P elements are silenced, and P element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery assembles, and resident elements are silenced. Significantly, resident transposons insert into piRNA clusters, and these new insertions are transmitted to progeny, produce novel piRNAs, and are associated with reduced transposition. P element invasion thus triggers heritable changes in genome structure that appear to enhance transposon silencing.  相似文献   

10.
The hobo transposon is responsible for one of the three hybrid dysgenic systems that have been described in Drosophila melanogaster. Most studies on the hobo dysgenic system have been carried out using the PM system as a reference. However, these two systems differ significantly. In particular, several studies have failed to find any correlation between the molecular structures of hobo elements, the instability of the transposon and the incidence of gonadal dysgenic (GD) sterility. On the other hand, no study of the ability of females to permit hobo activity in their progeny when they are crossed with males harboring active hobo elements (permissivity) has yet been reported. In order to investigate the parameters involved in hobo permissivity, four E strains were studied with regard to the molecular nature of their hobo sequences and the GD sterility induced by a controlled source of hobo transposase. We show that hobo permissivity varies both within and between E strains. Moreover, permissivity decreases with age in E females. Our results are discussed with respect to similar phenomena that have been described in relation to the reactivity of the IR dysgenic system.  相似文献   

11.
We have analyzed two mutations of the white-eye gene, which arose in flies subject to I-R hybrid dysgenesis. These mutations are associated with insertions of apparently identical 5.4 kb sequences, which we have cloned. We believe that these insertions are copies of the I factor controlling I-R hybrid dysgenesis. The I factor is not a member of the copia-like or fold-back classes of transposable elements and has no sequence homology with the P factor that controls P-M dysgenesis. All strains of D. melanogaster contain I-factor sequences. Those present in reactive strains must represent inactive I elements. I elements have a remarkably similar sequence organization in all reactive strains and are located in peri-centromeric regions. Inducer strains appear to contain both I elements, located in peri-centromeric regions, and 10-15 copies of the complete I factor at sites on the chromosome arms.  相似文献   

12.
Genetic traits associated with P-M hybrid dysgenesis in Drosophila melanogaster were synergistically affected by X-rays. The interaction between damages induced by these two mutator systems was evident when sterility and X/Y chromosome loss were used as endpoints. No interaction was detected in partial chromosome loss, monitored by the loss of BS and y+ markers. The synergism in sterility, measured either as all-or-none or premature sterility (fecundity) was observed when male hybrids derived from different P strains fathers, namely Harwich or II2, were X-irradiated and the effects compared relative to similarly treated non-dysgenic hybrids. Brooding of sperm showed that the effects of ionizing radiation were ionizing radiation were dependent upon the stage of spermatogenesis during which cells were irradiated. The highly synergistic effect on sterility was found when either spermatids or spermatocytes, but not mature sperm, were irradiated with 550 rad of X-rays. These findings were consistent with the higher radiosensitivity of spermatocytes and spermatids to genetic damage and with the correlation between the incidence of sterility and aging of dysgenic hybrids. The latter observation was particularly evident in the case of Harwich P strain-derived male hybrids whose fertility was greatly reduced due to P element mobility. The synergistic effect of X-rays in these dysgenic hybrids resulted in the virtual abolition of the germ line, increasing the sterility from 50% of the untreated 9-10-day old males, to 85% of the treated males when spermatocytes were irradiated. The synergism observed between transposon mobility and ionizing radiation can best the attributed to an interaction between X-ray-induced and P element-induced chromosome breaks. This interpretation is consistent with the more than additive increase in X or Y chromosome loss in irradiated, Harwich P strain-derived hybrid sons. The induction of these events was 1.164% in dysgenic irradiated males as compared to 0.234% in X-irradiated nondysgenic hybrids and 0.40% in dysgenic untreated males. No synergism was observed in X/Y loss in hybrids derived from II2 P strain fathers where the frequency of the events due to P element mobility alone was only one tenth (0.037%) of that found in Harwich-derived hybrids.  相似文献   

13.
14.
Engels WR 《Genetics》1981,98(3):565-587
In its hypermutable state, an unstable singed allele, snw, mutates in the germline to two other alleleic forms at a total frequency usually between 40 and 60%. In its stable state, the mutation rate of snw is essentially zero. Its state depends on an extrachromosomal condition indistinguishable from a property called cytotype previously studied as a component of hybrid dysgenesis. Of the two known systems of hybrid dysgenesis, denoted P-M and I-R, snw hypermutability is determined by the P-M system and appears to be independent of the I-R system. Cytotype, as defined by the control of snw mutability, is self-reproducing in the cytoplasm or nucleoplasm of the germline through at least two generations. However, it is not entirely autonomous, being ultimately determined by the chromosomes after sufficiently many generations of backcrossing. This combination of chromosomal and extrachromosomal transmission agrees well with previous studies on cytotype. Temperature differences have little effect on the mean mutation rates, but they have a pronounced effect on the intrinsic variance among individuals. The latter effect suggests that high temperatures reduce germ-cell survival during the development of dysgenic flies. Chromosomal rearrangements produce no apparent effects on the behavior of snw. Hypermutability is thought to be caused by the excision or other alteration of an inserted genetic element in the snw gene. This element might be a copy of the "P factor," which is though to be a mobile sequence capable of causing female sterility and other dysgenic traits in the P-M system.  相似文献   

15.
The impact of hybrid dysgenesis on the chromosome structure of Drosophila melanogaster ovarian nurse cells was studied. In the examined lines and interlinear hybrids (including those yielded by dysgenic crosses in the P-M and I-R systems of hybrid dysgenesis), disturbed chromosome synapsis was revealed. The disturbance was somewhat similar to that observed in interspecific hybrids. Quantitative analysis showed that the mean frequency of nuclei with defective chromosome pairing ranged from 60.4 to 76%. FISH analysis of ovarian nurse chromosomes of Canton S x Berlin hybrids showed differences in the label localization in asynaptic homologs of arm 2L, which probably results in disrupted homolog pairing and reveal interlinear differences in localization of mobile genetic elements. Our results conform to Sved's model stating that hybrid dysgenesis is based on disorganization of the germline nuclear space.  相似文献   

16.
Change of hybrid dysgenesis potentials in P-M system of Drosophila melanogaster — In the P-M system of hybrid dysgenesis, three types of Drosophila melanogaster strains have been described in relation to hybrid gonadal sterility: P, Q and M. When M strain females were mated with P strain males, the P factors resulted in variable level of sterility in their progeny. The Q strain had no significant potential for sterility in any hybrid strain combination. To observe the dynamics of chromosomal contamination, due to the P transposable elements in different genetic context, mixed populations of these three types of strains were set up and monitored for their gonadal sterility potential during at least 30 generations.A first set of 16 experimental populations was set up; each of these was initiated with a mixture of 50% of individuals from the Harwich strain (a strong P strain) and 50% of individuals from a M or Q strain collected in natural populations. The M activity levels of these strains corresponded to a range from 100% to 0%. For all of these populations, the M activity potential disappeared during the five first generations. However, the P activity potential reached an equilibrium level positively correlated with the M activity potential level introduced at the beginning. It is proposed that the force of invasion of the P type by chromosomal contamination through the transposition of the P elements is dependent on the copy number of P sequences present on the chromosome of the M strain in competition.A second set of 18 experimental populations was set up with a mixture of P, M or Q strains collected in France between 1965 and 1982 (this period probably corresponds to the invasion of the P elements in France). After 30 generations, all of these populations (except one) had lost all dysgenic sterility potentiality and seemed to be of the Q type. Taking into account the results obtained from the two sets of experimental populations, the temporal and geographical distribution of P elements in the world could be explained by a progressive diffusion of autonomous P elements, from America with an accompanying decrease of their ability to transpose.

Ce travail a été réalisé dans le cadre de l'A.T.P. Biologie des populations et de l'UA 693 du C.N.R.S.  相似文献   

17.
An autonomous P element from Drosophila melanogaster was introduced by microinjection into the germ line of its sibling species, Drosophila simulans. The invasion kinetics of P elements was studied in seven independent lines over 60 generations, using gel blotting, in situ hybridization, and dysgenic crosses. Some of the main phenotypic and molecular characteristics of P-M hybrid dysgenesis were observed, i.e., gonadal dysgenesis (GD sterility), chromosome rearrangements, and the occurrence of degenerate P elements. At least four lines reached a steady state with complete or nearly complete P-element regulation but with a moderate number of P elements (10–24 per haploid genome) and P activity (10–35% GD sterility). This failure to obtain strong P strains in D. simulans could be due to experimental conditions, a host-dependent component of P transposition, or more severe selection against the deleterious effects of this transposon.  相似文献   

18.
Summary When Drosophila melanogaster males coming from a class of strains known as inducer are crossed with females from the complementary class (reactive), a quite specific kind of sterility is observed in the F1 female progeny (denoted SF). The inducer chromosomes differ from the reactive chromosomes by the presence of a transposable element (called the I factor) that is responsible for the induction of this dysgenic symptom. In the germ line of dysgenic females, up to 100% of the reactive chromosomes may be contaminated, i.e. they acquire I factor(s) owing to very frequent replicative transpositions. A contaminated reactive stock was obtained by reconstructing the reactive genotype in the offspring of SF females and its kinetics of invasion by I elements was followed in the successive inbred dysgenic generations. The results show that the mean copy number of I elements increased very quickly up to the level of inducer strains and then stayed in equilibrium even though the dysgenic state was perpetuated by selection for SF sterility at every generation. The possible mechanisms of this copy number limitation are discussed.  相似文献   

19.
The latitudinal cline in P-M gonadal dysgenesis potential in eastern Australia has been shown to comprise three regions which are, from north to south respectively, P, Q, and M, with the P-to-Q and Q-to-M transitions occurring over relatively short distances. The P element complements of 30 lines from different regions of the cline were determined by molecular techniques. The total amount of P element-hybridizing DNA was high in all lines, and it did not correlate in any obvious way with the P-M phenotypes of individual lines. The number of potentially full-sized P elements per genome was high in lines from the P regions, but variable or low among lines from the Q and M regions, and thus declined overall from north to south. A particular P element deletion-derivative, the KP element, occurred in all the tested lines. The number of KP elements was low in lines from the P region, much higher in lines from the Q region, and highest among lines from the M region, thus forming a cline reciprocal to that of the full-sized P elements. Another transposable element, hobo, which has been described as causing dysgenic traits similar to those of P-M hybrid dysgenesis, was shown to be present in all lines and to vary among them in number, but not in any latitudinal pattern. The P-M cline in gonadal dysgenesis potential can be inferred to be based on underlying clinal patterns of genomic P element complements. P activity of a line was positively correlated with the number of full-sized P elements in the line, and negatively correlated with the number of KP elements. Among Q and M lines, regulatory ability was not correlated with numbers of KP elements.  相似文献   

20.
The male recombination factor 23.5MRF, isolated ten years ago from a natural Greek population of Drosophila melanogaster, has been shown to induce hybrid dysgenesis when crossed to some M strains, in a fashion slightly different from that of most P strains. Furthermore, it was recently shown that 23.5MRF can also induce GD sterility when crossed to specific P strain females (e.g., Harwich, pi 2 and T-007). In these experiments, the P strains mentioned behaved like M strains in that they did not induce sterility in the reciprocal crosses involving 23.5MRF. We extended the analysis to show that 23.5MRF does not destabilize snW(M) and that a derivative with fewer full-length P elements behaves like an M strain toward the same P strains and still retains its dysgenic properties in the reciprocal crosses. We show that there is a strong correlation between the site of dysgenic chromosomal breakpoints induced by 23.5MRF and the localization of hobo elements on the second chromosome, and also that hobo elements are found associated with several 23.5MRF induced mutations. These results suggest that hobo elements are responsible for the aberrant dysgenic properties of this strain, and that they may express their dysgenic properties independent of the presence of P elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号