首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endonuclease VII of phage T4 resolves Holliday structures in vitro by nicking pairs of strands across the junction. We report here analyses of this reaction between endonuclease VII and a Holliday structure analogue, made in vitro from synthetic oligonucleotides. The enzyme cleaves the structure in a non-concerted way and nicks each strand independently. Combinations of nicks with counter-nicks in strands across the junction resolve the construct. The specificity of the enzyme for DNA secondary structures was tested with a series of branched molecules made from oligonucleotides with the same nucleotide sequence in one strand. Results show that the number, location and relative cleavage efficiencies depend largely on the local nucleotide sequence, rather than on the branch type. In particular, endonuclease VII cleaves a complete four-armed cruciform as efficiently as a three-armed Y-junction or its derivatives, a semi-Y, a fork with two single-strand overhangs, a single-strand overhang, and a nicked DNA. However, exchange or addition of one or more nucleotides within the cleavage area flanking the structural signal for endonuclease VII strongly affects the cleavage pattern as well as their relative efficiency of usage. Examples with a single-stranded overhang are presented and show in summary that the enzyme has a fivefold preference for pyrimidines rather than purines.  相似文献   

2.
Cruciform-resolvase interactions in supercoiled DNA   总被引:42,自引:0,他引:42  
D M Lilley  B Kemper 《Cell》1984,36(2):413-422
T4 endonuclease VII, which cleaves Holliday-like junctions in DNA, specifically cleaves short inverted repeats in supercoiled plasmids. These sequences are subject to site-specific cleavage by single-strand-specific nucleases, and cruciform formation has been suggested as an explanation for this observation. This proposal is greatly strengthened by the present data, since a formal analogy between cruciform structures and Holliday junctions exists. Resolution of a variety of unrelated cruciform sequences demonstrates that the cleavage process results in a linear molecule with hairpin ends and single ligatable nicks at positions corresponding to the stem-base of the cruciform. In two examples mapped in detail, the cleavages are exclusively introduced at two or three nucleotides from the end of the symmetric sequence at the 5' side on each strand. These studies demonstrate the potential of endonuclease VII as a probe of cruciform structure and the utility of short cruciform structures as Holliday junction models.  相似文献   

3.
Rap endonuclease targets recombinant joint molecules arising from phage lambda Red-mediated genetic exchange. Previous studies revealed that Rap nicks DNA at the branch point of synthetic Holliday junctions and other DNA structures with a branched component. However, on X junctions incorporating a three base-pair core of homology or with a fixed crossover, Rap failed to make the bilateral strand cleavages characteristic of a Holliday junction resolvase. Here, we demonstrate that Rap can mediate symmetrical resolution of 50 bp and chi Holliday structures containing larger homologous cores. On two different mobile 50 bp junctions Rap displays a weak preference for cleaving the phosphodiester backbone between 5'-GC dinucleotides. The products of resolution on both large and small DNA substrates can be sealed by T4 DNA ligase, confirming the formation of nicked duplexes. Rap protein was also assessed for its capacity to influence the global conformation of junctions in the presence or absence of magnesium ions. Unlike the known Holliday junction binding proteins, Rap does not affect the angle of duplex arms, implying an unorthodox mode of junction binding. The results demonstrate that Rap can function as a Holliday junction resolvase in addition to eliminating other branched structures that may arise during phage recombination.  相似文献   

4.
Holliday junctions are intermediate structures that are formed and resolved during the process of genetic recombination. To investigate the interaction of junction-resolving nucleases with synthetic Holliday junctions that contain homologous arm sequences, we constructed substrates in which the junction point was free to branch migrate through 26 base-pairs of homology. In the absence of divalent cations, we found that both phage T4 endonuclease VII and phage T7 endonuclease I bound the synthetic junctions to form specific protein-DNA complexes. Such complexes were not observed in the presence of Mg2+, since the Holliday junctions were resolved by the introduction of symmetrical cuts in strands of like polarity. The major sites of cleavage were identified and found to occur within the boundaries of homology. T4 endonuclease VII showed a cleavage preference for the 3' side of thymine bases, whereas T7 endonuclease I preferentially cut the DNA between two pyrimidine residues. However, cleavage was not observed at all the available sites, indicating that in addition to their structural requirements, the endonucleases show strong site preferences.  相似文献   

5.
Endonuclease VII is an enzyme from bacteriophage T4 capable of resolving four-arm Holliday junction intermediates in recombination. Since natural Holliday junctions have homologous (2-fold) sequence symmetry, they can branch migrate, creating a population of substrates that have the branch point at different sites. We have explored the substrate requirements of endonuclease VII by using immobile analogs of Holliday junctions that lack this homology, thereby situating the branch point at a fixed site in the molecule. We have found that immobile junctions whose double-helical arms contain fewer than nine nucleotide pairs do not serve as substrates for resolution by endonuclease VII. Scission of substrates with 2-fold symmetrically elongated arms produces resolution products that are a function of the particular arms that are lengthened. We have confirmed that the scission products are those of resolution, rather than nicking of individual strands, by using shamrock junction molecules formed from a single oligonucleotide strand. A combination of end-labeled and internally labeled shamrock molecules has been used to demonstrate that all of the scission is due to coordinated cleavage of DNA on opposite sides of the junction, 3' to the branch point. Endonuclease VII is known to cleave the crossover strands of Holliday junctions in this fashion. The relationship of the long arms to the cleavage direction suggests that the portion of the enzyme which requires the minimum arm length interacts with the pair of arms containing the 3' portion of the crossover strands on the bound surface of the antiparallel junction.  相似文献   

6.
Enzymatic formation and resolution of Holliday junctions in vitro   总被引:12,自引:0,他引:12  
B Müller  C Jones  B Kemper  S C West 《Cell》1990,60(2):329-336
E. coli RecA protein promotes homologous pairing and reciprocal strand exchange reactions between duplex DNA molecules in vitro. Reaction intermediates contain Holliday junctions that are driven along the DNA at a maximal rate approaching 1000 bases per minute. T4 endonuclease VII cleaves Holliday junctions in vitro, and its inclusion in RecA-mediated reactions leads to the rapid formation of heteroduplex products. Product analysis indicates patch and splice recombinant molecules similar to those expected from in vivo recombination events. The combined formation and resolution of Holliday junctions has led us to propose a model for resolution based on the structure of RecA-DNA helices. One feature of this model is that resolution, which gives rise to the two types of recombinant product, may occur without need for isomerization of the junction.  相似文献   

7.
DNA branched junctions have been constructed that contain either five arms or six arms surrounding a branch point. These junctions are not as stable as junctions containing three or four arms; unlike the smaller junctions, they cannot be shown to migrate as a single band on native gels when each of their arms contains eight nucleotide pairs. However, they can be stabilized if their arms contain 16 nucleotide pairs. Ferguson analysis of these junctions in combination with three-arm and four-arm junctions indicates a linear increase in friction constant as the number of arms increases, with the four-arm junction migrating anomalously. The five-arm junction does not appear to have any unusual stacking structure, and all strands show similar responses to hydroxyl radical autofootprinting analysis. By contrast, one strand of the six-arm junction shows virtually no protection from hydroxyl radicals, suggesting that it is the helical strand of a preferred stacking domain. Both junctions are susceptible to digestion by T4 endonuclease VII, which resolves Holliday junctions. However, the putative helical strand of the six-arm junction shows markedly reduced cleavage, supporting the notion that its structure is largely found in a helical conformation. Branched DNA molecules can be assembled into structures whose helix axes form multiply connected objects and networks. The ability to construct five-arm and six-arm junctions vastly increases the number of structures and networks that can be built from branched DNA components. Icosahedral deltahedra and 11 networks with 432 symmetry, constructed from Platonic and Archimedean solids, are among the structures whose construction is feasible, now that these junctions can be made.  相似文献   

8.
The Holliday junction is a prominent intermediate in genetic recombination that consists of four double helical arms of DNA flanking a branch point. Under many conditions, the Holliday junction arranges its arms into two stacked domains that can be oriented so that genetic markers are parallel or antiparallel. In this arrangement, two strands retain a helical conformation, and the other two strands effect the crossover between helical domains. The products of recombination are altered by a crossover isomerization event, which switches the strands fulfilling these two roles. It appears that effecting this switch from the parallel conformation by the simplest mechanism results in braiding the crossover strands at the branch point. In previous work we showed by topological means that a short, parallel, DNA double crossover molecule with closed ends did not braid its branch point; however, that molecule was too short to adopt the necessary positively supercoiled topology. Here, we have addressed the same problem using a larger molecule of the same type. We have constructed a parallel DNA double crossover molecule with closed ends, containing 14 double helical turns in each helix between its crossover points. We have prepared this molecule in a relaxed form by simple ligation and in a positively supercoiled form by ligation in the presence of netropsin. The positively supercoiled molecule is of the right topology to accommodate braiding. We have compared the relaxed and supercoiled versions for their responses to probes that include hydroxyl radicals, KMnO4, the junction resolvases endonuclease VII and RuvC, and RuvC activation of KMNO4 sensitivity. In no case did we find evidence for a braid at the crossover point. We conclude that Holliday junctions do not braid at their branch points, and that the topological problem created by crossover isomerization in the parallel conformation is likely to be solved by distributing the stress over the helices that flank the branch point.  相似文献   

9.
Holliday junction resolution performed by a variety of structure-specific endonucleases is a key step in DNA recombination and repair. It is believed that all resolvases carry out their reaction chemistries in a similar fashion, utilizing a divalent cation to facilitate the hydrolysis of the phosphodiester backbone of the DNA, but their architecture varies. To date, with the exception of bacteriophage T4 endonuclease VII, each of the known resolvase enzyme structures has been categorized into one of two families: the integrases and the nucleases. We have now determined the structure of the Escherichia coli RusA Holliday junction resolvase, which reveals a fourth structural class for these enzymes. The structure suggests that dimer formation is essential for Mg(2+) cation binding and hence catalysis and that like the other resolvases, RusA distorts its Holliday junction target upon binding. Key residues identified by mutagenesis experiments are well positioned to interact with the DNA.  相似文献   

10.
During homologous recombination, genetic information is physically exchanged between parental DNAs via crossing single strands of the same polarity within a four-way DNA junction called a Holliday structure. This process is terminated by the endonucleolytic activity of resolvases, which convert the four-way DNA back to two double strands. To achieve productive resolution, the two subunits of the dimeric enzymes introduce two single-strand cuts positioned symmetrically in opposite strands across the DNA junction. Covalently linked dimers of endonuclease VII from phage T4, whether a homodimer with two or a heterodimer with only one functional catalytic centre, reacted with a synthetic cruciform DNA to form a DNA-enzyme complex immediately after addition of the enzyme. Analysis of the complexes from both reactions revealed that the bound junction contained one nick. While the active homodimer processed this nicked junction consecutively to duplex DNAs by making the second cut, the complex with the heterodimer stayed stable for the whole reaction time. Thus the high affinity of endonuclease VII for the junction containing one nick is part of the mechanism to ensure productive resolution of Holliday structures, by giving the enzyme time to make the second cut, whereupon the complex dissociates into the two duplex DNAs and the free enzyme.  相似文献   

11.
Junction-resolving enzymes are nucleases that exhibit structural selectivity for the four-way (Holliday) junction in DNA. In general, these enzymes both recognize and distort the structure of the junction. New insight into the molecular recognition processes has been provided by two recent co-crystal structures of resolving enzymes bound to four-way DNA junctions in highly contrasting ways. T4 endonuclease VII binds the junction in an open conformation to an approximately flat binding surface whereas T7 endonuclease I envelops the junction, which retains a much more three-dimensional structure. Both proteins make contacts with the DNA backbone over an extensive area in order to generate structural specificity. The comparison highlights the versatility of Holliday junction resolution, and extracts some general principles of recognition.  相似文献   

12.
Characterization of a bimobile DNA junction   总被引:1,自引:0,他引:1  
We present here a chemical and enzymatic footprinting analysis of a branched DNA molecule formed from four complementary 50-mer strands. These strands are designed to form a stable junction, in which two steps of branch point migration freedom are possible. Exposure of the junction to Fe(II).EDTA shows protection of 3 or 4 residues in each strand at the branch, while two resolvase enzymes (endonuclease VII from phage T4 and endonuclease I from phage T7), cleave all four strand near the branch. Chemical footprinting of this junction using the reagents MPE.Fe(II) and (OP)2Cu(I) shows that the branch site is hyper-reactive to cutting induced by these probes as it is in an immobile four-arm junction. The effects involve more residues than in the immobile case. In the absence of divalent cations, the structure of the junction alters, sites of enhanced cleavage by MPE.Fe(II) and (OP)2Cu(I) disappear, and purines at the branch become reactive to diethyl pyrocarbonate. Our interpretation of these results is based on the properties of immobile junction analogs and their response to these probes. In the presence of Mg2+, the three migrational isomers coexist, each probably in the form of a 2-fold symmetric structure with two helical arms stacked.  相似文献   

13.
B Müller  C Jones    S C West 《Nucleic acids research》1990,18(19):5633-5636
T7 endonuclease I is known to bind and cleave four-way junctions in DNA. Since these junctions serve as analogues of Holliday junctions that arise during genetic recombination, we have investigated the action of T7 endonuclease I on recombination intermediates containing Holliday junctions. We find that addition of T7 endonuclease I to strand exchange reactions catalysed by RecA protein of Escherichia coli leads to the formation of duplex products that correspond to 'patch' and 'splice' type recombinants. Resolution of the recombination intermediates occurs by the introduction of nicks at the site of the Holliday junction. The recombinant molecules contain 5'-phosphate and 3'-hydroxyl termini which may be ligated to restore the integrity of the DNA.  相似文献   

14.
Various branched DNA structures were created from synthetic, partly complementary oligonucleotides combined under annealing conditions. Appropriate mixtures of oligonucleotides generated three specific branched duplex DNA molecules: (i) a Holliday junction analog having a fixed (immobile) crossover bounded by four duplex DNA branches, (ii) a similar Holliday junction analog which is capable of limited branch migration and, (iii) a Y-junction, with three duplex branches and fixed branch point. Each of these novel structures was specifically cleaved by bacteriophage T7 gene 3 product, endonuclease I. The cleavage reaction "resolved" the two Holliday structure analogs into pairs of duplex DNA products half the size of the original molecules. The point of cleavage in the fixed-junction molecules was predominantly one nucleotide removed to the 5' side of the expected crossover position. Multiple cleavage positions were mapped on the Holliday junction with the mobile, or variable, branch point, to sites consistent with the unrestricted movement of the phosphodiester crossover within the region of limited dyad symmetry which characterizes this molecule. Based on the cleavage pattern observed with this latter substrate, the enzyme displayed a modest degree of sequence specificity, preferring a pyrimidine on the 3' side of the cleavage site. Branched molecules that were partial duplexes (lower order complexes which possessed single-stranded as well as duplex DNA branches) were also substrates for the enzyme. In these molecules, the cleaved phosphodiester bonds were in duplex regions only and predominantly one nucleotide to the 5' side of the branch point. The phosphodiester positions 5' of the branch point in single-stranded arms were not cleaved. Under identical reaction conditions, individually treated oligonucleotides were completely refractory. Thus, cleavage by T7 endonuclease I displays great structural specificity with an efficiency that can vary slightly according to the DNA sequence.  相似文献   

15.
Endonuclease VII (endo VII) is a Holliday structure-resolving enzyme of bacteriophage T4. Its activity depends on dimerization, DNA binding and hydrolysis of two phosphodiester bonds flanking the Holliday junction. We analysed the DNA-binding activity of truncated monomeric and covalently linked dimeric endo VII proteins. We show that both ends of endo VII are involved in DNA binding. In particular, the C-terminus of one subunit interacts with the N-terminus of the other subunit, constituting one DNA-binding site; the other two termini form the second binding site of the dimer. One binding site is sufficient to bind cruciform DNA. The concerted mechanism involving termini from different subunits ensures that only dimers bind to Holliday structures, thus providing two catalytic centres which introduce two cleavages in opposite strands. This is a precondition for precise resolution of Holliday structures.  相似文献   

16.
Homologous recombination is a fundamental cellular process that shapes and reshapes the genomes of all organisms and promotes repair of damaged DNA. A key step in this process is the resolution of Holliday junctions formed by homologous DNA pairing and strand exchange. In Escherichia coli , a Holliday junction is processed into recombinant products by the concerted activities of the RuvA and RuvB proteins, which together drive branch migration, and RuvC endonuclease, which resolves the structure. In the absence of RuvABC, recombination can be promoted by increasing the expression of the RusA endonuclease, a Holliday junction resolvase encoded by a cryptic prophage gene. Here, we describe the DNA binding properties of RusA. We found that RusA was highly selective for branched molecules and formed complexes with these structures even in the presence of a large excess of linear duplex DNA. However, it does bind weakly to linear duplex DNA. Under conditions where there was no detectable binding to duplex DNA, RusA formed a highly structured complex with a synthetic Holliday junction that was remarkably stable and insensitive to divalent metal ions. The duplex arms were found to adopt a specific alignment within this complex that approximated to a tetrahedral conformation of the junction.  相似文献   

17.
DNA structure specificity of Rap endonuclease.   总被引:1,自引:0,他引:1       下载免费PDF全文
The Rap protein of phage lambda is an endonuclease that nicks branched DNA structures. It has been proposed that Rap can nick D-loops formed during phage recombination to generate splice products without the need for the formation of a 4-strand (Holliday) junction. The structure specificity of Rap was investigated using a variety of branched DNA molecules made by annealing partially complementary oligo-nucleotides. On Holliday junctions, Rap endonuclease shows a requirement for magnesium or manganese ions, with Mn(2+)supporting 5-fold more cleavage than Mg(2+). The location of endonuclease incisions was determined on 3'-tailed D-loop, bubble, flayed duplex, 5'-flap and Y junction DNA substrates. In all cases, Rap preferentially cleaves at the branch point of these molecules. With a flayed duplex, incisions are made in the duplex adjacent to the single-strand arms. Comparison of binding and cleavage specificities revealed that Rap is highly structure-specific and exhibits a clear preference for 4- and 3-stranded DNA over Y and flayed duplex DNA. Almost no binding or cleavage was detected with duplex, partial duplex and single-stranded DNA. Thus Rap endonuclease shows a bias for structures that resemble D-loop and Holliday junction recombination intermediates.  相似文献   

18.
OsGEN-L has a 5'-flap endonuclease activity and plays an essential role in rice microspore development. The Class 4 RAD2/XPG family nucleases, including OsGEN-L, were recently found to have resolving activity for the Holliday junction (HJ), the intermediate of DNA strand recombination. In this study, we performed a detailed characterization of OsGEN-L, as a structure-specific endonuclease. Highly purified OsGEN-L was prepared as the full-length protein for in vitro endonuclease assays using various structured DNAs, and the 5'-flap endonuclease activity, which is stimulated in a PCNA-dependent manner, was demonstrated. In addition, the in vitro HJ resolving activity of OsGEN-L represents the first such activity originating from plant cells. OsGEN-L cleaved HJ at symmetrically related sites of the branch point. However, the two branched strands seemed to be cleaved individually, and not cooperatively, by each OsGEN-L monomer protein. The substrate specificity suggests that OsGEN-L functions in multiple processes of DNA metabolism in rice cells.  相似文献   

19.
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.  相似文献   

20.
The key intermediate in genetic recombination is the Holliday junction (HJ), a four-way DNA structure. At the end of recombination, HJs are cleaved by specific nucleases called resolvases. In Gram-negative bacteria, this cleavage is performed by RuvC, a dimeric endonuclease that belongs to the retroviral integrase superfamily. Here, we report the first crystal structure of RuvC in complex with a synthetic HJ solved at 3.75 Å resolution. The junction in the complex is in an unfolded 2-fold symmetrical conformation, in which the four arms point toward the vertices of a tetrahedron. The two scissile phosphates are located one nucleotide from the strand exchange point, and RuvC approaches them from the minor groove side. The key protein–DNA contacts observed in the structure were verified using a thiol-based site-specific cross-linking approach. Compared with known complex structures of the phage resolvases endonuclease I and endonuclease VII, the RuvC structure exhibits striking differences in the mode of substrate binding and location of the cleavage site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号