首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Garriga  H Bertrand  A M Lambowitz 《Cell》1984,36(3):623-634
We have identified nuclear mutants of Neurospora that are defective in splicing the mitochondrial large rRNA and that accumulate unspliced pre-rRNA (35S RNA). In cyt-4 mutants, the unspliced pre-rRNA contains short 3' end extensions (110 nucleotides) that are not present in pre-rRNAs from the other mutants. This and other characteristics suggest that the cyt-4 mutants may be primarily defective in 3' end synthesis and the RNA splicing defect occurs secondarily as a result of impaired RNA folding. The cyt-4 mutants also accumulate a "short" intron RNA and small exon RNAs that may reflect aberrant RNA cleavages. The 5' end of the short intron is about 285 nucleotides downstream from the 5' splice site at or near the base of the "central hairpin", a putative intermediate in folding of the pre-rRNA. Furthermore, the aberrant cleavage sites are immediately after a six nucleotide sequence (GAUAAU) homologous to the final splice junction (GAU/AAC).  相似文献   

2.
3.
We reported previously that mitochondrial tyrosyl-tRNA synthetase, which is encoded by the nuclear gene cyt-18 in Neurospora crassa, functions in splicing several group I introns in N. crassa mitochondria (R. A. Akins and A. M. Lambowitz, Cell 50:331-345, 1987). Two mutants in the cyt-18 gene (cyt-18-1 and cyt-18-2) are defective in both mitochondrial protein synthesis and splicing, and an activity that splices the mitochondrial large rRNA intron copurifies with a component of mitochondrial tyrosyl-tRNA synthetase. Here, we used antibodies against different trpE-cyt-18 fusion proteins to identify the cyt-18 gene product as a basic protein having an apparent molecular mass of 67 kilodaltons (kDa). Both the cyt-18-1 and cyt-18-2 mutants contain relatively high amounts of inactive cyt-18 protein detected immunochemically. Biochemical experiments show that the 67-kDa cyt-18 protein copurifies with splicing and synthetase activity through a number of different column chromatographic procedures. Some fractions having splicing activity contain only one or two prominent polypeptide bands, and the cyt-18 protein is among the few, if not only, major bands in common between the different fractions that have splicing activity. Phosphocellulose columns resolve three different forms or complexes of the cyt-18 protein that have splicing or synthetase activity or both. Gel filtration experiments show that splicing activity has a relatively small molecular mass (peak at 150 kDa with activity trailing to lower molecular masses) and could correspond simply to dimers or monomers, or both, of the cyt-18 protein. Finally, antibodies against different segments of the cyt-18 protein inhibit splicing of the large rRNA intron in vitro. Our results indicate that both splicing and tyrosyl-tRNA synthetase activity are associated with the same 67-kDa protein encoded by the cyt-18 gene. This protein is a key constituent of splicing activity; it functions directly in splicing, and few, if any, additional components are required for splicing the large rRNA intron.  相似文献   

4.
The Cbp2 protein is encoded in the nucleus and is required for the splicing of the terminal intron of the mitochondrial COB gene in Saccharomyces cerevisiae . Using a yeast strain that lacks this intron but contains a related group I intron in the precursor of the large ribosomal RNA, we have determined that Cbp2 protein is also required for the normal accumulation of 21S ribosomal RNA in vivo . Such strains bearing a deletion of the CBP2 gene adapt slowly to growth in glycerol/ethanol media implying a defect in derepression. At physiologic concentrations of magnesium, Cbp2 stimulates the splicing of the ribosomal RNA intron in vitro . Nevertheless, Cbp2 is not essential for splicing of this intron in mitochondria nor is it required in vitro at magnesium concentrations >5 mM. A similar intron exists in the large ribosomal RNA (LSU) gene of Saccharomyces douglasii . This intron does need Cbp2 for catalytic activity in physiologic magnesium. Similarities between the LSU introns and COB intron 5 suggest that Cbp2 may recognize conserved elements of the these two introns, and protein-induced UV crosslinks occur in similar sites in the substrate and catalytic domains of the RNA precursors.  相似文献   

5.
1. Several nuclear mutants have been isolated which showed thermo- or cryo-sensitive growth on non-fermentable media. Although the original strain carried mitochondrial drug resistance mutations (CR, ER, OR and PR), the resistance to one or several drugs was suppressed in these mutants. Two of them showed a much reduced amount of the mitochondrial small ribosomal subunit (37S) and of the corresponding 16S ribosomal RNA. Two dimensional electrophoretic analysis did not reveal any change in the position of any of the mitochondrial ribosomal proteins. However one of the mitochondrial ribosomal proteins. However one of the mutants showed a striking decrease in the amounts of three ribosomal proteins S3, S4 and S15. 2. Four temperature-sensitive mitochondrial mutations have been localized in the region of the gene coding for the large mitochondrial ribosomal RNA (23S). These mutants all showed a marked anomaly in the mitochondrial large ribosomal subunit (50S) and/or the corresponding 23S ribosomal RNA.  相似文献   

6.
7.
8.
The spliceosome is thought to undergo a conformational change between the two catalytic steps of precursor messenger RNA splicing, although the specific events in this transition are poorly understood. We previously proposed a two-state model of splicing in which the conformations required for the first and second steps are in competition. Here, we identify and characterize a class of prp8 mutants that suppress first-step splicing defects and oppose the action of the previously described prp8 suppressors of second-step defects; these opposing effects parallel those of ribosomal 'ram' and 'restrictive' mutants, which alter fidelity of transfer RNA decoding. On the basis of genetic interactions, we propose that prp8-mediated substrate repositioning during the transition occurs between catalytic-center opening and closure mediated by the U6 small nuclear RNA and the DExH/D ATPase gene prp16. Modulation of these events alters splice-site selection and splicing fidelity.  相似文献   

9.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by helping the intron RNA fold into the catalytically active structure. The regions required for splicing include an idiosyncratic N-terminal extension, the nucleotide-binding fold domain, and the C-terminal RNA-binding domain. Here, we show that the idiosyncratic N-terminal region is in fact comprised of two functionally distinct parts: an upstream region consisting predominantly of a predicted amphipathic alpha-helix (H0), which is absent from bacterial tyrosyl-tRNA synthetases (TyrRSs), and a downstream region, which contains predicted alpha-helices H1 and H2, corresponding to features in the X-ray crystal structure of the Bacillus stearothermophilus TyrRS. Bacterial genetic assays with libraries of CYT-18 mutants having random mutations in the N-terminal region identified functionally important amino acid residues and supported the predicted structures of the H0 and H1 alpha-helices. The function of N and C-terminal domains of CYT-18 was investigated by detailed biochemical analysis of deletion mutants. The results confirmed that the N-terminal extension is required only for splicing activity, but surprisingly, at least in the case of the N. crassa mitochondrial (mt) large ribosomal subunit (LSU) intron, it appears to act primarily by stabilizing the structure of another region that interacts directly with the intron RNA. The H1/H2 region is required for splicing activity and TyrRS activity with the N. crassa mt tRNA(Tyr), but not for TyrRS activity with Escherichia coli tRNA(Tyr), implying a somewhat different mode of recognition of the two tyrosyl-tRNAs. Finally, a CYT-18 mutant lacking the N-terminal H0 region is totally defective in binding or splicing the N. crassa ND1 intron, but retains substantial residual activity with the mt LSU intron, and conversely, a CYT-18 mutant lacking the C-terminal RNA-binding domain is totally defective in binding or splicing the mt LSU intron, but retains substantial residual activity with the ND1 intron. These findings lead to the surprising conclusion that CYT-18 promotes splicing via different sets of interactions with different group I introns. We suggest that these different modes of promoting splicing evolved from an initial interaction based on the recognition of conserved tRNA-like structural features of the group I intron catalytic core.  相似文献   

10.
cyt18-1 (299-9) is a nuclear mutant of Neurospora crassa that has been shown to have a temperature-sensitive defect in splicing the mitochondrial large rRNA intron. In the present work, we investigate the effect of the cyt18-1 mutation on splicing of mitochondrial mRNA introns. Two genes were studied in detail; the cytochrome b (cob) gene, which contains two introns, and a "long form" of the cytochrome oxidase subunit I (coI) gene, which contains four introns. We found that splicing of both cob introns and splicing of at least two of the coI introns are strongly inhibited in the mutant, whereas splicing of coI intron 1, which is excised as a 2.6 X 10(3) base circle, is relatively unaffected. The rRNA intron and both cob introns are group I introns, whereas the circular coI intron may belong to another structural class. Control experiments showed that the degree of inhibition of splicing is greater in the mutant than can be accounted for by severe inhibition of mitochondrial protein synthesis. Finally, experiments in which mutant cells were shifted from 25 degrees C to 37 degrees C showed that splicing of the large rRNA precursor and splicing of the coI mRNA precursor are inhibited with similar kinetics. Considered together, our results suggest that the cyt18 gene encodes a trans-acting component that is required for the splicing of group I mitochondrial DNA introns or some subclass thereof. Since Neurospora cob intron 1 has been shown to be self-splicing in vitro, defective splicing of this intron in cyt18-1 indicates that an essentially RNA-catalyzed splicing reaction must be facilitated by a trans-acting factor, presumably a protein, in vivo.  相似文献   

11.
In some strains of Saccharomyces cerevisiae the mitochondrial gene coding for 21S rRNA is interrupted by an intron of 1143 bp. This intron contains a reading frame for 235 amino acids: Unassigned Reading Frame (URF). In order to check whether expression of this URF is required for proper splicing of precursors to 21S rRNA, the precision of RNA splicing was analysed in a petite mutant, where no mitochondrial protein synthesis is possible anymore. We have devised a new assay to monitor the precision of the splicing event. The method is of general application, provided that the sequence of the splice boundaries is known. In the case of the 21S rRNA it involves the synthesis of the DNA oligonucleotide d(CGATCCCTATTGTC( complementary to the 5' d(CGATCCCTAT) and 3' d(TGTC) borders flanking the intron in the 21S rRNA gene. The oligonucleotide is labelled with 32p at the 5'-end, hybridised to RNA and subsequently subjected to digestion with S1 nuclease. Resistance to digestion will only be observed if the correct splice-junction is made. The petite mutant we have studied contains a 21S rRNA with the same migration behaviour as wildtype 21S rRNA. In RNA blotting experiments, using an intron specific hybridisation probe, the same intermediates in splicing are found both in wild type and petite mutant. Finally the synthetic oligonucleotide hybridises to petite 21S rRNA and its thermal dissociation behaviour is indistinguishable from a hybrid formed with wildtype 21S rRNA. We conclude that expression of the URF, present in the intron of the 21S rRNA gene, is not required for processing and correct splicing of 21S ribosomal precursor RNA.  相似文献   

12.
The nuclear cyt-4 mutants of Neurospora crassa have been shown previously to be defective in splicing the group I intron in the mitochondrial large rRNA gene and in 3' end synthesis of the mitochondrial large rRNA. Here, Northern hybridization experiments show that the cyt-4-1 mutant has alterations in a number of mitochondrial RNA processing pathways, including those for cob, coI, coII and ATPase 6 mRNAs, as well as mitochondrial tRNAs. Defects in these pathways include inhibition of 5' and 3' end processing, accumulation of aberrant RNA species, and inhibition of splicing of both group I introns in the cob gene. The various defects in mitochondrial RNA synthesis in the cyt-4-1 mutant cannot be accounted for by deficiency of mitochondrial protein synthesis or energy metabolism, and they suggest that the cyt-4-1 mutant is defective in a component or components required for processing and/or turnover of a number of different mitochondrial RNAs. Defective splicing of the mitochondrial large rRNA intron in the cyt-4-1 mutant may be a secondary effect of failure to synthesize pre-rRNAs having the correct 3' end. However, a similar explanation cannot be invoked to account for defective splicing of the cob pre-mRNA introns, and the cyt-4-1 mutation may directly affect splicing of these introns.  相似文献   

13.
14.
Self-splicing of yeast mitochondrial ribosomal and messenger RNA precursors   总被引:25,自引:0,他引:25  
G van der Horst  H F Tabak 《Cell》1985,40(4):759-766
We have previously shown linear and circular splicing intermediates resembling intermediates that result from self-splicing of ribosomal precursor RNA of Tetrahymena to be present in mitochondrial RNA. Here we show that splicing of yeast mitochondrial precursor RNA also occurs in vitro in the absence of mitochondrial proteins. The large ribosomal RNA gene, consisting of the intron and part of the flanking exon regions, was inserted behind the SP6 promoter in a recombinant plasmid and was transcribed in vitro. The resulting RNA shows self-catalyzed splicing via incorporation of GTP at the 5'-end of the excised intron, 5'- to 3'-exon ligation, and intron circularization. When purified mitochondrial RNA is incubated under similar conditions with alpha-32P-GTP, the excised ribosomal intron RNA is also labeled, as well as several other RNA species. Some of these RNAs are derived from excised introns from the multiply split gene coding for cytochrome oxidase subunit I.  相似文献   

15.
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.  相似文献   

16.
Pre-mRNA splicing mutants of Schizosaccharomyces pombe.   总被引:8,自引:1,他引:7       下载免费PDF全文
J Potashkin  R Li    D Frendewey 《The EMBO journal》1989,8(2):551-559
A collection of temperature sensitive (ts-) mutants was prepared by chemical mutagenesis of a wild type Schizosaccharomyces pombe strain. To screen the ts- mutants for pre-mRNA splicing defects, an oligodeoxynucleotide that recognizes one of the introns of the beta-tubulin pre-mRNA was used as a probe in a Northern blot assay to detect accumulation of intron sequences. This screening procedure identified three pre-mRNA splicing mutants from 100 ts- strains. The three mutants are defective in an early step of the pre-mRNA splicing reaction; none accumulate intermediates. The precursors that accumulate at 37 degrees C are polyadenylated. Analysis of the splicing of another pre-mRNA showed that the mutations are not specific for beta-tubulin. The total RNA pattern in the three splicing mutants appears to be normal. In addition, the amounts of the spliceosomal snRNAs are not drastically changed compared to the wild type and splicing of pre-tRNAs is not blocked. Genetic analyses demonstrate that all three splicing mutations are tightly linked to the ts- growth defects and are recessive. Crosses among the mutants place them in three complementation groups. The mutants have been named prp1, prp2 and prp3.  相似文献   

17.
18.
J M Burke 《Gene》1988,73(2):273-294
In vivo and in vitro genetic techniques have been widely used to investigate the structure-function relationships and requirements for splicing of group-I introns. Analyses of group-I introns from extremely diverse genetic systems, including fungal mitochondria, protozoan nuclei, and bacteriophages, have yielded results which are complementary and highly consistent. In vivo genetic studies of fungal mitochondrial systems have served to identify cis-acting sequences within mitochondrial introns, and trans-acting protein products of mitochondrial and nuclear genes which are important for splicing, and to show that some mitochondrial introns are mobile genetic elements. In vitro genetic studies of the self-splicing intron within the Tetrahymena thermophila nuclear large ribosomal RNA precursor (Tetrahymena LSU intron) have been used to examine essential and nonessential RNA sequences and structures in RNA-catalyzed splicing. In vivo and in vitro genetic analysis of the intron within the bacteriophage T4 td gene has permitted the detailed examination of mutant phenotypes by analyzing splicing in vivo and self-splicing in vitro. The genetic studies combined with phylogenetic analysis of intron structure based on comparative nucleotide sequence data [Cech 73 (1988) 259-271] and with biochemical data obtained from in vitro splicing experiments have resulted in significant advances in understanding the biology and chemistry of group-I introns.  相似文献   

19.
20.
The 27,100 base-pair circular mitochondrial DNA from the yeast Kloeckera africana has been found to contain an inverted duplication spanning 8600 base-pairs. Sequences hybridizing to transfer RNAs and the large ribosomal RNA are present in the duplication; however, one end of this segment terminates in the large mitochondrial ribosomal RNA sequence so that at least 1000 base-pairs of the gene are not repeated. The large and small mitochondrial ribosomal RNAs have been shown to have lengths of 2700 and 1450 bases, respectively, and genes for these sequences are separated by a minimum of 1300 base-pairs and a maximum of 1750 base-pairs. Consequences of the large inverted duplication to mechanisms of the petite mutation are discussed in terms of previous hypotheses centred on intramolecular recombination in yeast mitochondrial DNA at sequences of homology or partial homology. Despite the long inverted duplication in K. africana mitochondrial DNA, this yeast has one of the lowest frequencies of spontaneous petite mutants amongst petite positive yeasts. One implication of these findings is that in this yeast intra-molecular mitochondrial DNA sequence homology may not be an important factor in the excision process leading to petite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号