首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J R Glenney  P Glenney 《Cell》1983,34(2):503-512
Spectrin and related proteins are made up of a common calmodulin-binding subunit tightly associated with a variant subunit. We have analyzed the distribution of the variant subunits in various cell types using subunit-specific antibodies in immunofluorescence as well as western blotting and in some cases have compared the subunits by two-dimensional peptide mapping. We have found that in the majority of cell types (lymphocytes, hepatocytes, neurons, fibroblasts) fodrin 235 K is present in the absence of the other two variant subunits, spectrin 220 K and TW260. Two cell types were found (skeletal muscle and erythrocytes) which contained only the spectrin variant. Two cell types display two distinct variant subunits. Both fodrin 235 K and spectrin 220 K are detected in cardiac muscle whereas TW260 is present in addition to fodrin 235 K in intestinal epithelial cells. During the early stages of embryonic development of the chicken intestine, fodrin 235 K is expressed in the epithelial cells whereas TW260 and spectrin are not detectable. TW260 is expressed relatively late in development (15-16 days) and is inserted only in the apical (brush border) membrane compartment whereas fodrin 235 K is present in these same cells and underlies the entire plasma membrane. These results suggest that fodrin provides the general linkage system between microfilaments and the membrane in nonerythroid and nonmuscle cells.  相似文献   

2.
Spectrin, an important component of the mammalian erythrocyte membrane skeleton, is a heterodimeric protein with alpha and beta subunits of 280 and 246 kDa, respectively. Spectrin-like proteins have also been demonstrated in a wide variety of nonerythroid cells. To examine the hypothesis that nonerythroid beta spectrins may be encoded by the "erythroid" beta spectrin gene, we have isolated cDNA clones from a human fetal skeletal muscle library by hybridization to a previously described red cell beta spectrin cDNA. Detailed comparison of muscle and erythroid beta spectrin cDNAs has revealed sequence identity over the majority of their lengths, confirming that they are the product of the same gene. However, there is a sharp divergence in sequence at their 3' ends. A consequence of this divergence is the replacement of the carboxyl terminus of erythroid beta spectrin with a different, longer carboxyl-terminal domain in skeletal muscle. We hypothesize that tissue-specific differential polyadenylation leads to the selective activation of a donor splice site within the beta spectrin coding sequence, splicing downstream nonerythroid exons into the mature muscle beta spectrin mRNA. We predict that replacement, in nonerythroid cells, of the beta spectrin carboxyl terminus, known to participate in spectrin self-association and phosphorylation, has significant functional consequences. These data may explain previously reported nonerythroid beta spectrin isoforms that resemble red cell beta spectrin by immunochemical analysis.  相似文献   

3.
We have demonstrated a differential association between two types of spectrin, from erythrocytes and brain, with two types of intermediate filaments, vimentin filaments and neurofilaments. Electron microscopy showed that erythrocyte spectrin promoted the binding of vimentin filaments to red cell inside-out vesicles via lateral associations with the filaments. In vitro binding studies showed that the association of spectrin with vimentin filaments was apparently saturable, increased with temperature, and could be prevented by heat denaturation of the spectrin. Comparisons were made between erythrocyte and brain spectrin binding to both vimentin filaments and neurofilaments. We found that vimentin filaments bound more erythrocyte spectrin than brain spectrin, while neurofilaments bound more brain spectrin than erythrocyte spectrin. Our results show that both erythroid and nonerythroid spectrins are capable of binding to intermediate filaments and that such associations may be characterized by differential affinities of the various types of spectrin with the several classes of intermediate filaments present in cells. Our results also suggest a role for both erythroid and nonerythroid spectrins in mediating the association of intermediate filaments with plasma membranes or other cytoskeletal elements.  相似文献   

4.
Hemin-mediated dissociation of erythrocyte membrane skeletal proteins   总被引:2,自引:0,他引:2  
Spectrin tetramers and oligomers in normal erythrocytes are cross-linked by actin and protein 4.1 to form a two-dimensional membrane skeletal network. In the present study, we find that hemin, a breakdown product of hemoglobin, progressively (a) alters the conformation of spectrin as revealed by electron microscope studies and by the decreased resistance of spectrin to proteolytic degradation, (b) alters the conformation of protein 4.1 as revealed by the increased mobility of protein 4.1 on nondenaturing gel electrophoresis, (c) weakens spectrin dimer alpha beta-dimer alpha beta, spectrin alpha-spectrin beta, as well as spectrin-protein 4.1 associations as analyzed by nondenaturing gel electrophoresis, and (d) diminishes the structural stability of erythrocyte membrane skeletons (i.e. Triton-insoluble ghost residues) subjected to mechanical shearing. Since hemin may be liberated from oxidized or unstable mutant hemoglobin under pathological conditions, these hemin-induced effects on spectrin, protein 4.1, and membrane skeletal stability may play a role in the membrane lesion of these erythrocytes.  相似文献   

5.
The location of the Plasmodium falciparum vaccine candidate antigen Pf155/RESA in the membrane of infected erythrocytes was analzyed by means of selective surface radioiodination and immunofluorescence of surface-modified cells. The lack of radiolabel in Pf155/RESA as well as its localization by immunofluorescence similar to that of the N-terminal region of erythrocyte band 3 suggests that the antigen is associated with the cytoplasmic phase of the erythrocyte membrane. In concordance with this, Pf155/RESA was detected by immunofluorescence on the surface of inside out membrane vesicles from P. falciparum-infected erythrocytes. Pf155/RESA from spent culture medium also bound to inside out membrane vesicles of normal erythrocytes as well as to cytoskeletal shells of such vesicles, but failed to bind to sealed right-side out membrane vesicles. Depletion of spectrin from the vesicles abolished antigen binding, suggesting that Pf155/RESA association with the erythrocyte cytoskeleton is mediated by spectrin.  相似文献   

6.
The cytoskeleton of isolated murine primitive erythrocytes   总被引:1,自引:0,他引:1  
Summary Cytoskeletons of primitive erythrocytes have been isolated from the embryos of day 12 pregnant C57/Bl mice and examined by transmission electron microscopy, immunofluorescence microscopy, and SDS-polyacrylamide gel electrophoresis. Microtubules are the most prominent cytoskeletal component. They are found either singly or organized into loose bundles just under the plasma membrane, but do not form classical marginal bands in most cells. Immunofluorescence with a polyclonal tubulin antiserum confirms this distribution and further reveals numerous mitotic figures among the cells. Rhodamine-conjugated phalloidin and heavy meromyosin labeling reveal that actin is localized in the cortex of the primitive erythrocyte in the form of 6 nm filaments. Antibody directed against avian erythrocyte alpha spectrin demonstrates that spectrin is also found in the cortex. Occasional 10-nm intermediate filaments, observed in the primitve erythrocytes by electron microscopy, are believed to be of the vimentin class based on positive reaction of the cells with vimentin-specific antiserum. In addition, a band in erythrocyte cytoskeletons comigrates in SDS-polyacrylamide gels with vimentin isolated from mouse kidney. Spectrin and actin were also found to be associated with the membrane of primitive erythrocytes when membrane ghost preparations were analyzed by SDS-polyacrylamide gel electrophoresis.  相似文献   

7.
Association of spectrin with desmin intermediate filaments   总被引:5,自引:0,他引:5  
The association of erythrocyte spectrin with desmin filaments was investigated using two in vitro assays. The ability of spectrin to promote the interaction of desmin filaments with membranes was investigated by electron microscopy of desmin filament-erythrocyte inside-out vesicle preparations. Desmin filaments bound to erythrocyte inside-out vesicles in a spectrin-dependent manner, demonstrating that spectrin is capable of mediating the association of desmin filaments with plasma membranes. A quantitative sedimentation assay was used to demonstrate the direct association of spectrin with desmin filaments in vitro. When increasing concentrations of spectrin were incubated with desmin filaments, spectrin cosedimented with desmin filaments in a concentration-dependent manner. At near saturation the spectrin:desmin molar ratio in the sedimented complex was 1:230. Our results suggest that, in addition to its well characterized associations with actin, spectrin functions to mediate the association of intermediate filaments with plasma membranes. It might be that nonerythrocyte spectrins share erythrocyte spectrin's ability to bind to intermediate filaments and function in nonerythroid cells to promote the interaction of intermediate filaments with actin filaments and/or the plasma membrane.  相似文献   

8.
Sertoli cells prepared from rats ages 15 and 25 days were shown to contain a spectrin-like protein. Indirect immunofluorescence with monospecific antimouse erythrocyte immunoglobulin G (IgG) and with monospecific antimouse brain spectrin IgG revealed specific staining in Sertoli cells. Both antibodies precipitated two spectrin-like peptides of 240,000 and 235,000 daltons from cells solubilized with octyl glucoside. Proteins from Sertoli cell membranes were separated by electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate and electrophoretically transferred to nitrocellulose membrane. Incubation of nitrocellulose membrane with either of the two antibodies, followed by horseradish peroxidase conjugated to second antibody, revealed only the larger, or alpha, spectrin subunit (Western blots). Both antibodies were used to provide immunoautoradiographic identification of the spectrin-like protein. In this procedure, spectrin and Sertoli cell membranes were shown to compete with [125I]-labeled spectrin from mouse erythrocytes for binding to antimouse erythrocyte spectrin IgG. Finally, two-dimensional proteolytic mapping of the 240,000- and 235,000-dalton peptides demonstrated limited spot homology with rat erythrocyte spectrin. However, subcellular fractions from Sertoli cells all contained a spectrin-like protein showing high homology from fraction to fraction. It is concluded that Sertoli cells contain a spectrin-like protein that is seen in cell fractions prepared by centrifugation, i.e., mitochondria, microsomes, nuclei, cytoplasm, and plasma membranes. Although homology with spectrin from erythrocytes or brain is not seen in peptide maps, the alpha subunit shares antigenic determinants with spectrin from erythrocytes. The beta subunit is believed to be precipitated by antispectrin as the result of binding to the alpha subunit, since the beta subunit shows no detectable antigenic homology with that of spectrin.  相似文献   

9.
Synemin, a high-molecular-weight protein associated with intermediate filaments in muscle, and vimentin, an intermediate-filament subunit found in many different cell types, have been identified by immunologic and electrophoretic criteria as components of intermediate filaments in mature avian erythrocytes. Desmin, the predominant subunit of intermediate filaments in muscle, has not been detected in these cells. Two dimensional immunoautoradiography of proteolytic fragments of synemin and vimentin demonstates that the erythrocyte proteins are highly homologous, if not identical, to their muscle counterparts. Double immunoflurorescence reaveals that erythrocyte synemin and vimentin co-localize in a cytoplasmic network of sinuous filaments that extends from the nucleus to the plasma membrane and resists aggregation by colcemid. Erythrocytes that are attached to glass cover slips can be sonicated to remove nuclei and nonadherent regions of the plasma membrane; this leaves elliptical patches of adherent membrane that retain mats of vimentin- and synemin-containing intermediate filaments, as seen by immunofluorescence and rotary shadowing. Similarly, mechanical enucleation of erythrocyte ghosts in suspension allows isolation of plasma membranes that retain a significant fraction of the synemin and vimentin, as assayed by electrophoresis, and intermediate filaments, as seen in thin sections. Both synemin and vimentin remain insoluble along with spectrin and actin, in solutions containing nonionic detergent and high salt. However, brief exposure of isolated membrane to distilled water releases the synemin and vimentin together in nearly pure form, before the release of significant amounts of spectrin and actin. These data suggest that avian erythrocyte intermeditate filaments are somehow anchored to the plasma membrane; erythrocytes may thus provide a simple system for the study of intermediate filaments and their mode of interaction with membranes. In addition, these data, in conjunction with previous data from muscle, indicate that synemin is capable of associating with either desmin or vimentin and may thus perform a special role in the structure or function of intermediate filaments in erythrocytes as well as muscle.  相似文献   

10.
We describe multiple human cardiac and skeletal muscle spectrin isoforms. Cardiac muscle expresses five erythroid alpha,beta spectrin-reactive isoforms with estimated MR's of 280, 274, 270, 255, and 246 kD, respectively. At least one nonerythroid alpha-spectrin of MR 284 kD is expressed in heart. While skeletal muscle shares the 280, 270, and 246 kD erythroid spectrins, it expresses an immunologically distinct 284 kD nonerythroid alpha-spectrin isoform. The 255 kD erythroid beta-spectrin isoform is specific for cardiac tissue. By immunocytochemistry, both erythroid beta- and nonerythroid alpha-spectrins are localized to costameres, the plasma membrane, and the neuromuscular junctional region.  相似文献   

11.
Protein 4.2 is a major component of the erythrocyte membrane cytoskeleton. Here we show that immunoreactive forms of human (Mr 72,000) and pig (Mr 75,000) protein 4.2 are also associated with the plasma membrane of various nonerythroid cells and tissues, such as platelets, brain, and kidney. Protein 4.2 can be extracted from platelet membranes under the same conditions (pH 11, 1 M KI, 1 M urea) which are required to extract protein 4.2 from the erythrocyte plasma membrane. The demonstration of protein 4.2 in nucleated cells that contain also several other proteins of the erythrocyte membrane cytoskeleton indicates some general principles underlying the molecular construction of the plasma membrane in erythrocytes and nonerythroid cells.  相似文献   

12.
Chicken lens spectrin is composed predominantly of equimolar amounts of two polypeptides with solubility properties similar, but not identical, to erythrocyte spectrin. The larger polypeptide, Mr 240,000 (lens alpha-spectrin), co-migrates with erythrocyte and brain alpha-spectrin on one- and two-dimensional SDS polyacrylamide gels and cross-reacts with antibodies specific for chicken erythrocyte alpha-spectrin; the smaller polypeptide, Mr 235,000 (lens gamma-spectrin), co-migrates with brain gamma-spectrin and does not cross-react with either the alpha-spectrin antibodies specific for chicken erythrocyte beta-spectrin. Minor amounts of polypeptides antigenically related to erythrocyte beta-spectrin with a greater electrophoretic mobility than lens gamma-spectrin are also detected in lens. The equimolar ratio of lens alpha- and gamma-spectrin is invariantly maintained during the extraction of lens plasma membranes under different conditions, or after immunoprecipitation of whole extracts of lens with erythrocyte alpha-spectrin antibodies. Two-dimensional peptide mapping reveals that whereas alpha-spectrins from chicken erythrocytes, brain, and lens are highly homologous, the gamma-spectrins, although related, have some cell-type-specific peptides and are substantially different from erythrocyte beta-spectrin. Thus, the expression of cell-type-specific gamma- and beta-spectrins may be the basis for the assembly of a spectrin-plasma membrane complex whose molecular composition is tailored to the functional requirements of the particular cell-type.  相似文献   

13.
Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.  相似文献   

14.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the beta-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

15.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the β-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

16.
Based primarily on studies of human erythrocytes, current theories of the structure and organization of erythrocyte membrane localize spectrin to the membrane cytoplasmic surface. Affinity purified anti-sheep spectrin antibodies were used in indirect immunofluorescence studies of intact erythrocytes from various vertebrate species and inside-out and right-side-out impermeable sheep erythrocyte vesicles. This investigation detected immunologically reactive external and potentially transmembranal determinant(s) of the sheep erythrocyte spectrin "assembly." Parallel studies using anti-sheep and anti-human spectrin antibodies, as well as 125I surface-labelling studies of intact sheep and human erythrocytes, indicated that this particular membrane orientation of spectrin was evident in sheep but not in human erythrocytes. Antisera containing antibodies to the external portion of this spectrin "assembly" demonstrated external fluorescence to a variable degree on some, but not all, vertebrate erythrocytes surveyed, confirming that the sheep erythrocyte was not the only exception. It is suggested that there may be subtle species variability in the intermolecular associations of the spectrin "assembly" with(in) the erythrocyte membrane not requiring alterations of the spectrin molecule itself.  相似文献   

17.
Antibodies directed to the cytoplasmic domain of human erythrocyte band 3, the major integral protein of the erythrocyte membrane which is thought to be the main anchoring site of the membrane cytoskeleton, were demonstrated in the present study to react with the membrane of various nonerythroid cells, such as human leucocytes, fibroblasts or human umbilical mesenchyme cells, amniotic epithelium and vascular smooth muscle. In cultured fibroblasts staining was confined to small dots and streaks associated with both the dorsal and ventral cell membrane. In human lymphocytes band 3 antigen accompanied capping of concanavalin A binding surface receptors. The immunoreactive form of band 3 in fibroblasts was shown by immunoblotting studies to be a polypeptide of approximately 60 000 dalton. This polypeptide is immunologically and electrophoretically related to a major immunoreactive form of band 3 naturally occurring in the red blood cell membrane. Considering the recent identification in nonerythroid cells of immunoreactive forms of other major components of the erythrocyte membrane cytoskeleton, the present observation in nucleated cells of a polypeptide related to erythrocyte band 3 may indicate some of the features of erythrocyte membrane architecture are also present in nonerythroid cells.  相似文献   

18.
Spectrin and related molecules   总被引:14,自引:0,他引:14  
  相似文献   

19.
Biochemical studies of the plasma membrane and the cytoskeleton of nucleated erythrocytes are strongly limited by the difficulties encountered in enucleating large quantities of cells. We describe an easily built hydrodynamic system which allows rapid preparation of large amounts of avian and fish erythrocyte plasma membranes. The contents of two 25-ml syringes containing hemolyzed nucleated erythrocytes are forced through four capillaries to a specially designed mixing chamber which fills a collecting syringe. The 50-ml erythrocyte suspension can be processed in 2 s. The high speed flow is achieved with a hand-activated piston. The turbulences in the mixing chamber are carried to an optimal efficiency by the vis-à-vis disposition of the four mixing jets. The enucleated membranes are separated from the nuclei and residual nucleated cells by differential centrifugations. They do not show contamination with nuclear material. Erythrocytes from chicken and trout have been used. They present striking differences in their stability toward hydrodynamic disruption, erythrocytes from chicken being far more stable. Ninety-five percent of trout erythrocytes are enucleated after only one run through the mixing chamber. Two runs performed at the maximal flow rate are necessary to enucleate chicken erythrocytes with a yield of 80%. In the former case most of the purified enucleated plasma membranes are fragmented in small vesicles while they retain a large size in the case of chicken erythrocytes. The proteins of the membranes thus prepared are characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: we found that erythrocyte membranes from trout are remarkable for their small spectrin content compared to those from chicken.  相似文献   

20.
Plasmodium falciparum dramatically modifies the structure and function of the membrane of the parasitized host erythrocyte. Altered membrane properties are the consequence of the interaction of a group of exported malaria proteins with host cell membrane proteins. KAHRP (the knob-associated histidine-rich protein), a member of this group, has been shown to interact with erythrocyte membrane skeletal protein spectrin. However, the molecular basis for this interaction has yet to be defined. In the present study, we defined the binding motifs in both KAHRP and spectrin and identified a functional role for this interaction. We showed that spectrin bound to a 72-amino-acid KAHRP fragment (residues 370-441). Among nine-spectrin fragments, which encompass the entire alpha and beta spectrin molecules (four alpha spectrin and five beta spectrin fragments), KAHRP bound only to one, the alpha N-5 fragment. The KAHRP-binding site within the alpha N-5 fragment was localized uniquely to repeat 4. The interaction of full-length spectrin dimer to KAHRP was inhibited by repeat 4 of alpha spectrin. Importantly, resealing of this repeat peptide into erythrocytes mislocalized KAHRP in the parasitized cells. We concluded that the interaction of KAHRP with spectrin is critical for appropriate membrane localization of KAHRP in parasitized erythrocytes. As the presence of KAHRP at the erythrocyte membrane is necessary for cytoadherence in vivo, our findings have implications for the development of new therapies for mitigating the severity of malaria infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号