首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The survival of spores of Aspergillus flavus suspended in distilled water and cooled rapidly to –70 to –75°C. was found to depend primarily on the rate of subsequent warming of the frozen suspension. Only 7 per cent of the spores germinated following slow warming at 0.9°C. per minute, whereas about 75 per cent germinated following rapid warming at 700°C. per minute. 2. Viability was dependent on the rate at which the suspensions warmed from –70 to 0°C. (subzero warming), but was not dependent on the rate of thawing of the frozen water in which the spores were suspended. 3. The logarithm of the percentage of germination appeared to be a linear function of the logarithm of the rate of subzero warming when spores were warmed at rates ranging from 0.12 to 1000°C. per minute. 4. The lethal effects of slow warming from –70 to 0°C. were more pronounced between about –20 and 0°C. than between –70 and –20°C. In the former range of temperatures, the percentage of germination decreased sharply as slow warming progressed towards 0°C. 5. Slow warming from –70 to 0°C. was more harmful to the spores than was a 1 or 2 hour exposure to constant temperatures between –70 and 0°C. 6. Slow warming was found to be more harmful than rapid warming when spores were suspended in horse serum, 0.16 molal sodium chloride, or 0.29 molal sucrose as well as in distilled water.  相似文献   

2.
The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.KEY WORDS: DSC, Flory–Huggins theory, hot-melt extrusion, thermal processing  相似文献   

3.
The aim of this study was to investigate the capability of two surfactants, Cremophor RH 40 (RH) and Cremophor EL (EL), to prepare liquid crystalline nanoparticles (LCN) and to study its influence on the topical delivery of finasteride (FNS). FNS-loaded LCN was formulated with the two surfactants and characterized for size distribution, morphology, entrapment efficiency, in vitro drug release, and skin permeation/retention. Influence of FNS-loaded LCN on the conformational changes on porcine skin was also studied using attenuated total reflectance Fourier-transform infrared spectroscopy. Transmission electron microscopical image confirmed the formation of LCN. The average particle size of formulations was in the range of 165.1–208.6 and 153.7–243.0 nm, respectively. The formulations prepared with higher surfactant concentrations showed faster release and significantly increased skin permeation. Specifically, LCN prepared with RH 2.5% presented higher permeation flux (0.100 ± 0.005 μgcm−2h−1) compared with lower concentration (0.029 ± 0.007 μgcm−2h−1). Typical spectral bands of lipid matrix of porcine skin were shifted to higher wavenumber, indicating increased degree of disorder of the lipid acyl chains which might cause fluidity increase of stratum corneum. Taken together, Cremophor surfactants exhibited a promising potential to stabilize the LCN and significantly augmented the skin permeation of FNS.KEY WORDS: Cremophor, finasteride, liquid crystalline nanoparticles, skin permeation–retention  相似文献   

4.
In this study, liquid crystalline nanoparticles (LCN) have been proposed as new carrier for topical delivery of finasteride (FNS) in the treatment of androgenetic alopecia. To evaluate the potential of this nanocarrier, FNS-loaded LCN was prepared by ultrasonication method and characterized for size, shape, in vitro release, and skin permeation–retention properties. The particle size ranged from 153.8 to 170.2 nm with a cubical shape and exhibited controlled release profile with less than 20% of the drug released in the first 24 h. The release profile was significantly altered with addition of different additives. Formulation with lower monoolein exhibited higher skin permeation with a flux rate of 0.061 ± 0.005 μg cm−2 h−1 in 24 h. The permeation however, significantly increased with glycerol, propylene glycol, and polyethylene glycol 400, while it declined for the addition of oleic acid. A similar trend was observed with skin retention study. In conclusion, FNS-loaded LCN could be advocated as a viable alternative for oral administration of the drug.Key words: androgenetic alopecia, finasteride, liquid crystalline nanoparticles, release, skin permeation–retention  相似文献   

5.
Curcumin (CUR) has various pharmacological effects, but its extensive first-pass metabolism and short elimination half-life limit its bioavailability. Therefore, transdermal application has become a potential alternative to delivery CUR. To increase CUR solubility for the development of a transparent homogenous gel and also enhance the permeation rate of CUR into the skin, β-cyclodextrin–curcumin nanoparticle complex (BCD–CUR-N) was developed. CUR encapsulation efficiency was increased by raising the percentage of CUR to BCD up to 20%. The mean particle size of the best CUR loading formula was 156 nm. All evaluation data using infrared spectroscopy, Raman spectroscopy, powder X-ray diffractometry, differential thermal analysis and scanning electron microscopy confirmed the successful formation of the inclusion complex. BCD–CUR-N increased the CUR dissolution rate of 10-fold (p < 0.01). In addition, the improvement of CUR permeability acrossed skin model tissue was observed in gel containing the BCD–CUR-N and was about 1.8-fold when compared with the free CUR gel (p < 0.01). Overall, CUR in the form of the BCD–CUR-N improved the solubility further on the penetration of CUR.KEY WORDS: β-cyclodextrin, curcumin, diffusion kinetic, hydrophilic gel, nanoparticle, skin permeation  相似文献   

6.
The objective of the present study was to develop transdermal patch for zolmitriptan, determine its in vivo absorption using the rabbit skin. Solvent evaporation technique prepared zolmitriptan patch was settled in two-chamber diffusion cell combined with excised rabbit abdomen skin for permeation study. A sufficient cumulative penetration amount of zolmitriptan (258.5 ± 26.9 μg/cm2 in 24 h) was achieved by the formulation of 4% zolmitriptan, 10% Azone, and adhesive of DURO-TAK® 87–4098. Pharmacokinetic parameters were determined via i.v. and transdermal administrations using animal model of rabbit. The results revealed that the absolute bioavailability was about 63%. Zolmitriptan could be detected with drug level of 88 ± 51 ng/mL after transdermal administration of 15 min. The in vivo absorption curve obtained by deconvolution approach using WinNonlin® program was correlated well with the in vitro permeation curve, the correlation coefficient R is 0.84, and the result indicated that in vitro skin permeation experiments were useful to predict the in vivo performance. In addition, little skin irritation was found in the irritation study. As a conclusion, the optimized zolmitriptan transdermal patches could effectively deliver adequate drug into systemic circulation in short time without producing any irritation phenomenon and worth to be developed.KEY WORDS: chemical enhancer, drug-in-adhesive patch, in vitro/in vivo correlation, pharmacokinetic, zolmitriptan  相似文献   

7.
The observation was made previously that the reduction in radiosensitivity in Vicia faba (as measured by postirradiation root growth) by prolonging the exposure time from about 10 minutes to 24 hours is much less marked at 3°C. than at 19°C. If chromosome damage is mainly responsible for the reduced root growth, this observation might be explained by a smaller drop in the "two-hit" aberration component, resulting from an increased time for which breaks are available for rejoining at 3°C. This hypothesis was tested by comparing chromatid aberration frequencies in root meristem cells produced by 105 rads of 60Co γ rays, given at dose rates of 19.4 and 0.073 rads per minute. Beans were maintained in aerated water at 2°C. prior to and during irradiation, and at this temperature the rate of development of cells was such that the two different exposure times both occupied a period during which the cell sensitivity was approximately constant. Immediately subsequent to irradiation, the roots were returned to 19°C. and examined cytologically. All chromatid aberrations were less frequent after low dose rate treatment, but only the chromatid interchange reduction was significant. The average time for which breaks are available for reunion, calculated from Lea's G function, was found to be 12 hours (95 per cent C.L. 6 to 24 hours).  相似文献   

8.
Lornoxicam is a potent oxicam class of non steroidal anti-inflammatory agent, prescribed for mild to moderate pain and inflammation. Niosomal gel of lornoxicam was developed for topical application. Lornoxicam niosomes (Lor-Nio) were fabricated by thin film hydration technique. Bilayer composition of niosomal vesicles was optimized. Lor-Nio dispersion was characterized by DSC, XRD, and FT-IR. Morphological evaluation was performed by scanning electron microscopy (SEM). Lor-Nio dispersion was incorporated into a gel using 2% w/w Carbopol 980 NF. Rheological and texture properties of Lor-Nio gel formulation showed suitability of the gel for topical application. The developed formulation was evaluated for in vitro skin permeation and skin deposition studies, occlusivity test and skin irritation studies. Pharmacodynamic activity of the Lor-Nio gel was performed by carragenan-induced rat paw model. Optimized Lor-Nio comprised of Span 60 and cholesterol in a molar ratio of 3:1 with 30 μM dicetyl palmitate as a stabilizer. It had particle size of 1.125 ± 0.212 μm (d90), with entrapment efficiency of 52.38 ± 2.1%. DSC, XRD, and IR studies showed inclusion of Lor into niosomal vesicles. SEM studies showed spherical closed vesicular structure with particles in nanometer range. The in vitro skin permeation studies showed significant improvement in skin permeation and skin deposition for Lor-Nio gel (31.41 ± 2.24 μg/cm2, 30.079 ± 1.2 μg/cm2) over plain lornoxicam gel (7.37 ± 1.27 μg/cm2, 6.6 ± 2.52 μg/cm2). The Lor-Nio gel formulation showed enhanced anti-inflammatory activity by exhibiting mean edema inhibition (87.69 ± 1.43%) which was significantly more than the plain lornoxicam gel (53.84 ± 2.21%).KEY WORDS: anti-inflammatory activity, lornoxicam, niosomes, rheology, texture analysis  相似文献   

9.
The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3+CD4+ T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO2max) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30–50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3+ and CD4+ (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70+ lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.  相似文献   

10.
p-Hydroxyphenylacetate (HPA) 3-hydroxylase is a two-component flavoprotein monooxygenase that catalyzes the hydroxylation of p-hydroxyphenylacetate to form 3,4-dihydroxyphenylacetate. Based on structures of the oxygenase component (C2), both His-120 and Ser-146 are located ∼2.8 Å from the hydroxyl group of HPA. The variants H120N, H120Q, H120Y, H120D, and H120E can form C4a-hydroperoxy-FMN (a reactive intermediate necessary for hydroxylation) but cannot hydroxylate HPA. The impairment of H120N is not due to substrate binding because the variant can still bind HPA. In contrast, the H120K variant catalyzes hydroxylation with efficiency comparable with that of the wild-type enzyme; the hydroxylation rate constant for H120K is 5.7 ± 0.6 s−1, and the product conversion ratio is 75%, compared with values of 16 s−1 and 90% for the wild-type enzyme. H120R can also catalyze hydroxylation, suggesting that a positive charge on residue 120 can substitute for the hydroxylation function of His-120. Because the hydroxylation reaction of wild-type C2 is pH-independent between pH 6 and 10, the protonation status of key components required for hydroxylation likely remains unchanged in this pH range. His-120 may be positively charged for selective binding to the phenolate form of HPA, i.e. to form the Hisδ+·HPAδ− complex, which in turn promotes oxygen atom transfer via an electrophilic aromatic substitution mechanism. Analysis of Ser-146 variants revealed that this residue is necessary for but not directly engaged in hydroxylation. Product formation in S146A is pH-independent and constant at ∼70% over a pH range of 6–10, whereas product formation for S146C decreased from ∼65% at pH 6.0 to 27% at pH 10.0. These data indicate that the ionization of Cys-146 in the S146C variant has an adverse effect on hydroxylation, possibly by perturbing formation of the Hisδ+·HPAδ− complex needed for hydroxylation.  相似文献   

11.
Sodium efflux from rings of frog stomach muscle was measured at 5° and 15°C in three different steady states. After incubation in normal, K-free, or ouabain (10-4 M) solutions, intracellular cations stabilized at markedly differing levels. At 5°C, inhibition of Na extrusion was shown in the rate coefficients for 22Na efflux, which were slightly smaller in K-free than in normal solutions, and much smaller in ouabain. Due to the intracellular Na concentration differences, total Na efflux was similar in K-free and ouabain solutions, and only ⅕ as large in normal solution. At 15°C, normal total Na flux was only 1/7;–1/10 inhibitors, and may be underestimated. The total flux differences may involve dependence of the Na pump and Na permeation on internal Na concentration. The Q 10 of the steady-state fluxes was 3.7 in ouabain, 2.8 in K-free solution, and 1.9 in normal solution. The high temperature dependence of influx as well as efflux suggests transport mechanisms other than simple diffusion. Sodium turnover in the cell water was 46–66 mM/hr in inhibitors at 15°C, and a high rate of Na extrusion in normal muscle is suggested. However, cell volume:surface ratio is only 1.6 µ and all estimates of Na flux were under 3 pmoles/cm2 per sec, indicating low Na permeability.  相似文献   

12.
β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) complexes with sulfamethazine (SMT) were prepared and characterized by different experimental techniques, and the effects of βCD and MβCD on drug solubility were assessed via phase-solubility analysis. The phase-solubility diagram for the drug showed an increase in water solubility, with the following affinity constants calculated: 40.4 ± 0.4 (pH 2.0) and 29.4 ± 0.4 (pH 8.0) M−1 with βCD and 56 ± 1 (water), 39 ± 3 (pH 2.0) and 39 ± 5 (pH 8.0) M−1 with MβCD. According to 1H NMR and 2D NMR spectroscopy, the complexation mode involved the aromatic ring of SMT included in the MβCD cavity. The complexes obtained in solid state by freeze drying were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal analysis. The amorphous complexes obtained in this study may be useful in the preparation of pharmaceutical dosage forms of SMT.  相似文献   

13.
Unprotected sunlight exposure is a risk factor for a variety of cutaneous cancers. Topically used dihydroxyacetone (DHA) creates, via Maillard reaction, chemically fixed keratin sunscreen in the stratum corneum with significant protection against UVA/Soret radiation. When used in conjunction with naphthoquinones a naphthoquinone-modified DHA Maillard reaction is produced that provides protection across the UVB/UVA/Soret spectra lasting up to 1 week, resisting sweating and contact removal. The aim of this study was to examine a simplified version of this formulation for effect on UV transmission and to determine if penetration levels merit toxicity concerns. Permeability was demonstrated for freshly prepared DHA (30 mg/mL) and lawsone (0.035 mg/mL) alone and in combination using a side-by-side diffusion apparatus at 37°C over 48 h across shed snake skin and dermatomed pig skin. These samples were then examined for effectiveness and safety. Concentrations were determined by HPLC and UPLC monitored from 250–500 nm. Lawsone flux significantly decreased across pig skin (20.8 (±4.8) and 0.09 (±0.1) mg/cm2 h without and with DHA, respectively) but did not change across shed snake skin in the presence of DHA. Significantly reduced lawsone concentration was noted in donor chambers of combined solutions. Damage was not observed in any skins. Darker coloration with greater UV absorbance was observed in skins exposed to the combined solution versus individual solutions. This study confirmed that combined DHA and lawsone provided effective blocking of ultraviolet light through products bound in keratinized tissue. DHA permeation levels in pig skin suggest further in vitro and in vivo study is required to determine the safety of this system.KEY WORDS: cancer, dihydroxyacetone, FAMMM, naphthoquinone, skin  相似文献   

14.
1. Substrate cycling of fructose 6-phosphate through reactions catalysed by phosphofructokinase and fructose diphosphatase was estimated in bumble-bee (Bombus affinis) flight muscle in vivo. 2. Estimations of substrate cycling of fructose 6-phosphate and of glycolysis were made from the equilibrium value of the 3H/14C ratio in glucose 6-phosphate as well as the rate of 3H release to water after the metabolism of [5-3H,U-14C]glucose. 3. In flight, the metabolism of glucose proceeded exclusively through glycolysis (20.4μmol/min per g fresh wt.) and there was no evidence for substrate cycling. 4. In the resting bumble-bee exposed to low temperatures (5°C), the pattern of glucose metabolism in the flight muscle was altered so that substrate cycling was high (10.4μmol/min per g fresh wt.) and glycolysis was decreased (5.8μmol/min per g fresh wt.). 5. The rate of substrate cycling in the resting bumble-bee flight muscle was inversely related to the ambient temperature, since at 27°, 21° and 5°C the rates of substrate cycling were 0, 0.48 and 10.4μmol/min per g fresh wt. respectively. 6. Calcium ions inhibited fructose diphosphatase of the bumble-bee flight muscle at concentrations that were without effect on phosphofructokinase. The inhibition was reversed by the presence of a Ca2+-chelating compound. It is proposed that the rate of fructose 6-phosphate substrate cycling could be regulated by changes in the sarcoplasmic Ca2+ concentration associated with the contractile process.  相似文献   

15.
A technic is described for high resolution intracellular autoradiography in the electron microscope. Cultures of LLC-MK2 monkey kidney cells were incubated for 72 hours in a medium containing 0.4 µcurie per ml of thymidine-H3. After labeling, the cells were fixed with osmium tetroxide and embedded in methacrylate. Ultrathin sections of the labeled tissue were taken up on Formvar-coated and carbon-stabilized electron microscope grids. A 150 to 450 A layer of silver metal was then evaporated onto the tissue. The coated grids were exposed to bromine vapor for 1.5 to 2 minutes under red light, allowed to dry for 1 minute, and then covered with a thin film of 1 per cent aqueous gelatin applied by means of a fine wire loop lowered over the grid supported on a glass peg. For autoradiographic exposure, the grids were stored 50 days in a light-proof container at 4°C with calcium chloride desiccant. Development was carried out for 5 minutes at 20°C in Promicrol (May and Baker, England) diluted 1:1 with water, followed by a 1 minute water wash and fixation for 2.5 minutes in 15 per cent aqueous sodium thiosulphate. After removal of the gelatin by immersion for 16 hours in water at 37°C, the autoradiograms were dried and examined in the electron microscope. Ultrastructural detail was fairly well defined and the cytoplasm of each labeled cell was covered with an electron opaque deposit of silver, suggesting that a polynucleotide containing thymidine may be synthesized in the cytoplasm. The matter is discussed.  相似文献   

16.

Background

Weibel-Palade bodies (WPB) are endothelial cell (EC) specific secretory organelles containing Von Willebrand factor (VWF). The temperature-dependence of Ca2+-driven WPB exocytosis is not known, although indirect evidence suggests that WPB exocytosis may occur at very low temperatures. Here we quantitatively analyse the temperature-dependence of Ca2+-driven WPB exocytosis and release of secreted VWF from the cell surface of ECs using fluorescence microscopy of cultured human ECs containing fluorescent WPBs.

Principal Findings

Ca2+-driven WPB exocytosis occurred at all temperatures studied (7–37°C). The kinetics and extent of WPB exocytosis were strongly temperature-dependent: Delays in exocytosis increased from 0.92 s at 37°C to 134.2 s at 7°C, the maximum rate of WPB fusion decreased from 10.0±2.2 s−1 (37°C) to 0.80±0.14 s−1 (7°C) and the fractional extent of degranulation of WPBs in each cell from 67±3% (37°C) to 3.6±1.3% (7°C). A discrepancy was found between the reduction in Ca2+-driven VWF secretion and WPB exocytosis at reduced temperature; at 17°C VWF secretion was reduced by 95% but WPB exocytosis by 75–80%. This discrepancy arises because VWF dispersal from sites of WPB exocytosis is largely prevented at low temperature. In contrast VWF-propolypeptide (proregion) dispersal from WPBs, although slowed, was complete within 60–120 s. Novel antibodies to the cleaved and processed proregion were characterised and used to show that secreted proregion more accurately reports the secretion of WPBs at sub-physiological temperatures than assay of VWF itself.

Conclusions

We report the first quantitative analysis of the temperature-dependence of WPB exocytosis. We provide evidence; by comparison of biochemical data for VWF or proregion secretion with direct analysis of WPB exocytosis at reduced temperature, that proregion is a more reliable marker for WPB exocytosis at reduced temperature, where VWF-EC adhesion is increased.  相似文献   

17.
Outer surface protein A (OspA) is a crucial protein in the infection of Borrelia burgdorferi causing Lyme disease. We studied conformational fluctuations of OspA with high-pressure 15N/1H two-dimensional NMR along with high-pressure fluorescence spectroscopy. We found evidence within folded, native OspA for rapid local fluctuations of the polypeptide backbone in the nonglobular single layer β-sheet connecting the N- and C-terminal domains with τ << ms, which may give the two domains certain independence in mobility and thermodynamic stability. Furthermore, we found that folded, native OspA is in equilibrium (τ >> ms) with a minor conformer I, which is almost fully disordered and hydrated for the entire C-terminal part of the polypeptide chain from β8 to the C-terminus. Conformer I is characterized with ΔG0 = 32 ± 9 kJ/mol and ΔV0 = −140 ± 40 mL/mol, populating only ∼0.001% at 40°C at 0.1 MPa, pH 5.9. Because in the folded conformer the receptor binding epitope of OspA is buried in the C-terminal domain, its transition into conformer I under in vivo conditions may be critical for the infection of B. burgdorferi. The formation and stability of the peculiar conformer I are apparently supported by a large packing defect or cavity located in the C-terminal domain.  相似文献   

18.
Fungal keratitis is a serious corneal disease that may result in loss of vision. There are limited treatment options available in Iraqi eye hospitals which might be the main reason behind the poor prognosis of many cases. The purpose of this study was to prepare and pharmaceutically evaluate clotrimazole–β-cyclodextrin (CTZ–β-CD) eyedrops then clinically assess its therapeutic efficacy on fungal keratitis compared with extemporaneous amphotericin B eyedrops (0.5% w/v). A CTZ–β-CD ophthalmic solution was prepared and evaluated by various physicochemical, microbiological, and biological tests. The prepared formula was stable in 0.05 M phosphate buffer pH 7.0 at 40 ± 2°C and 75 ± 5% RH for a period of 6 months. Light has no significant effect on the formula’s stability. The CTZ–β-CD eyedrops efficiently complied with the isotonicity, sterility, and antimicrobiological preservative effectiveness tests. Results of the clinical study revealed that 20 (80%) patients showed a favorable response to the CTZ–β-CD eyedrops, while 16 patients (64%) exhibited a favorable response to amphotericin B (P > 0.05). The mean course of treatment was significantly (P < 0.05) less in the CTZ treatment group than in the amphotericin group (21.5 ± 5.2 vs. 28.3 ± 6.4 days, respectively). The CTZ formulation was significantly (P < 0.05) more effective in the management of severe cases and also against Candida sp. than amphotericin B. There was no significant difference (P < 0.05) between both therapies against filamentous fungi. The CTZ–β-CD formulation can be used alternatively to other ophthalmic antimycotic treatment options in developing countries where stability, cost, or efficacy is a limiting factor.Key words: clotrimazole, β-cyclodextrin, eyedrops, fungal keratitis, Iraq  相似文献   

19.
We have shown that cutaneous cooling-sensitive receptors can work as thermostats of skin temperature against cooling. However, molecule of the thermostat is not known. Here, we studied whether cooling-sensitive TRPM8 channels act as thermostats. TRPM8 in HEK293 cells generated output (y) when temperature (T) was below threshold of 28.4°C. Output (y) is given by two equations: At T >28.4°C, y = 0; At T <28.4°C, y  =  -k(T – 28.4°C). These equations show that TRPM8 is directional comparator to elicits output (y) depending on negative value of thermal difference (ΔT  =  T – 28.4°C). If negative ΔT-dependent output of TRPM8 in the skin induces responses to warm the skin for minimizing ΔT recursively, TRPM8 acts as thermostats against cooling. With TRPM8-deficient mice, we explored whether TRPM8 induces responses to warm the skin against cooling. In behavioral regulation, when room temperature was 10°C, TRPM8 induced behavior to move to heated floor (35°C) for warming the sole skin. In autonomic regulation, TRPM8 induced activities of thermogenic brown adipose tissue (BAT) against cooling. When menthol was applied to the whole trunk skin at neutral room temperature (27°C), TRPM8 induced a rise in core temperature, which warmed the trunk skin slightly. In contrast, when room was cooled from 27 to 10°C, TRPM8 induced a small rise in core temperature, but skin temperature was severely reduced in both TRPM8-deficient and wild-type mice by a large heat leak to the surroundings. This shows that TRPM8-driven endothermic system is less effective for maintenance of skin temperature against cooling. In conclusion, we found that TRPM8 is molecule of thermostat of skin temperature against cooling.  相似文献   

20.
We performed x-ray crystallographic analyses of the 6-aminohexanoate oligomer hydrolase (NylC) from Agromyces sp. at 2.0 Å-resolution. This enzyme is a member of the N-terminal nucleophile hydrolase superfamily that is responsible for the degradation of the nylon-6 industry byproduct. We observed four identical heterodimers (27 kDa + 9 kDa), which resulted from the autoprocessing of the precursor protein (36 kDa) and which constitute the doughnut-shaped quaternary structure. The catalytic residue of NylC was identified as the N-terminal Thr-267 of the 9-kDa subunit. Furthermore, each heterodimer is folded into a single domain, generating a stacked αββα core structure. Amino acid mutations at subunit interfaces of the tetramer were observed to drastically alter the thermostability of the protein. In particular, four mutations (D122G/H130Y/D36A/E263Q) of wild-type NylC from Arthrobacter sp. (plasmid pOAD2-encoding enzyme), with a heat denaturation temperature of Tm = 52 °C, enhanced the protein thermostability by 36 °C (Tm = 88 °C), whereas a single mutation (G111S or L137A) decreased the stability by ∼10 °C. We examined the enzymatic hydrolysis of nylon-6 by the thermostable NylC mutant. Argon cluster secondary ion mass spectrometry analyses of the reaction products revealed that the major peak of nylon-6 (m/z 10,000–25,000) shifted to a smaller range, producing a new peak corresponding to m/z 1500–3000 after the enzyme treatment at 60 °C. In addition, smaller fragments in the soluble fraction were successively hydrolyzed to dimers and monomers. Based on these data, we propose that NylC should be designated as nylon hydrolase (or nylonase). Three potential uses of NylC for industrial and environmental applications are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号