首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Mutants of avian erythroblastosis virus (AEV) were constructed by deleting large nucleotide segments in each of the viral oncogenes termed v-erbA and v-erbB. Mutants in erbA (erbA ?B+) retained the ability to transform fibroblasts in vitro, and these cells exhibited most of the transformation characteristics that typify wild-type AEV-transformed fibroblasts. In addition, the mutants induced small erythroid colonies upon infection of bone marrow cells in culture. Chickens inoculated with erbA ?B+ virus or with erbA ?B+-transformed cells developed sarcomas or atypical erythroid leukemias. The erythroid cells transformed in vivo or in vitro by the erbA ?B+ viruses appeared not to be as tightly blocked in differentiation as wild-type transformed cells. In contrast, fibroblasts infected with the erbA +B? mutant resembled normal cells in all transformation parameters tested, and no bone marrow cell transformation was observed with the mutant. The results indicate that the main transforming properties of AEV are encoded in erbB and that its effects are enhanced by erbA.  相似文献   

3.
ts Cl mouse L cells are temperature-sensitive (ts) in DNA synthesis. The protein involved undergoes inactivation at 38.5 °C, with an apparent half-life of 3–4 h. A variety of experimental approaches yield data indicating that the ts Cl gene product acts directly during the DNA-synthesis period, probably late during the duplication of chromosomal DNA. The specificity of the ts lesion is reflected in the fact that replication of mitochondrial DNA is unaffected for many hours after nuclear DNA synthesis is almost totally inhibited. Temperature inactivation is not due to degradation or to loss of template capacity of preformed DNA. ts Cl cells are able to enter a DNA-synthesis phase at the higher temperature, as indicated by radioautographic experiments and by studies in which cells, blocked at the permissive temperature (34 °C) in a pre-DNA synthesis phase by isoleucine deprivation, are subsequently incubated at 38.5 °C. Cells arrested early in DNA synthesis by hydroxyurea treatment at 34 °C continue such synthesis for a short interval after up-shift to 38.5 °C. However, they are then unable to complete the S phase in progress nor can they proceed into cell division. The kinetics of DNA synthesis in cells incubated at 38.5 °C and back-shifted to 34 °C are compatible with the model that the ts Cl locus encodes an S phase function.  相似文献   

4.
The hematopoietic target cells of the three prototype strains of replication defective avian leukemia viruses (DLVs) were studied, using a newly developed, quantitative in vitro transformation assay. Our results show that the target cells of avian erythroblastosis virus (AEV) belong to the erythroid lineage while those of myelocytomatosis virus 29 (MC29) and avian myeloblastosis virus (AMV) belong to the myeloid lineage. As judged from suicide experiments using BUdR incorporation and irradiation with visible light, a higher proportion of AEV- and AMV-target cells are in cycle than MC29-target cells. Using differentiation specific antisera directed against cell surface antigens, we could demonstrate that the target cells of AEV express erythroblast-specific antigen(s) and less intensively erythrocyte-specific antigen(s), while those of MC29 and AMV express myeloblast-specific antigen(s). In addition, MC29-target cells express macrophage-specific antigen(s). None of the AEV-target cells are adherent or phagocytic, while a small proportion of the AMV-target cells are adherent and about half of the MC29-target cells are both adherent and phagocytic. Our results support the concept that DLVs specifically transform certain types of committed erythroid and myeloid progenitor cells. The target cells of AEV and AMV appear to resemble the respective transformed cells in their state of differentiation, whereas those of MC29 appear to be more immature than the corresponding transformed cells.  相似文献   

5.
We have studied the plasma membranes of an SV40-transformed 3T3 cell line temperature sensitive for the transformed growth phenotype (ts H6-15 cells), and have found that they vary little as a function of temperature of cultivation. Analysis by polyacrylamide gel electrophoresis was performed on plasma membranes prepared from ts H6-15 cell cultured at the permissive (32 °C) and non-permissive (39 °C) temperatures and radioactively-labelled in several ways. No significant differences were seen when the electrophoretic patterns of polypeptides of the plasma membranes of ts H6-15 cells, grown through 3–4 generations in medium containing radioactive leucine (32 °C and 39 °C temperatures) were compared. Plasma membranes derived from cells similarly grown in medium with radioactive glucosamine indicated that extensive alterations in the intrinsic glycopeptides occurred in association with alteration in growth phenotype. A shift towards decreased synthesis of large molecular weight (? 100 000–160 000) glycopeptides occurred in cells grown at the temperature of non-transformed growtn (39 °C). A decrease in amount of a 1200 000 molecular weight glycopeptide at 39 °C was the most prominent of these alterations.We have studied the surface exposure of polypeptides and glycopeptides of intact cells grown at 32 and 39 °C, using lactoperoxidase-catalyzed iodination, NaBH4 reduction of galactose oxidase-treated cells, and metabolic-labelling with glucosamine of trypsin-sensitive molecules. We found no major qualitative differences between whole cell extracts or between plasma membrane preparations of cells cultivated at the permissive and non-permissive temperatures. Of special interest was the observation that the formation and surface exposure of a trypsin-sensitive, 240 000 molecular weight polypeptide appeared not to be ts in ts H6-15 cells. The significance of these observations will be discussed.  相似文献   

6.
A cell extract prepared from the lig-ts7 mutant of Escherichia coli is able to carry out a complete round of DNA replication of colicin E1 plasmid at 25 °C. However, the apparent rate of elongation of the progeny strands at this temperature is much smaller than in an extract from the thermoresistant revertant cells. Chain elongation in the lig-ts extract is depressed by raising the incubation temperature from 25 °C to 32 °C, whereas that in the lig+ revertant extract is not. The rate of closure of the progeny strands of newly formed open circular molecules is also reduced in the lig-ts extract, even at 25 °C.The DNA pulse-labelled with the lig-ts extract for 30 seconds at 32 °C contains a large amount of short DNA fragments of approximately 7 S, in addition to DNA chains of various sizes between 7 S and 17 S (unit length). Most of these replicating molecules are converted to completely replicated closed circular molecules upon chasing with a lig+ extract. DNA-DNA hybridization experiments show that molecules replicated to various extents contain 7 S DNA fragments of both strands, but more of the L-strand component, whose 5′-to-3′ direction corresponds to the overall direction of unidirectional replication. The longer DNA chains are enriched in the H-strand component.The cell extracts used for the plasmid DNA replication have an activity which converts alkali-labile closed circular plasmid DNA containing apurinic sites to alkali-stable closed circular molecules. Addition of nicotinamide mononucleotide leads to conversion of the alkali-labile DNA to open circular molecules. In the replication system with the cell extract, however, the compound does not interfere with elongation of progeny strands. Chain elongation in the lig-ts extract at 25 °C is not significantly affected by nicotinamide mononucleotide. Thus, the 7 S DNA fragments formed with the lig-ts extract are unlikely to be generated as a result of incomplete repair of misincorporated nucleotides. We conclude that both strands of colicin E1 plasmid DNA replicate discontinuously.  相似文献   

7.
Localized P1 mutagenesis has been used to isolate conditionally lethal mutations in the four-minute region of the Escherichia coli genome. One such mutation, ts25, has been mapped at about 3.7 minutes between the popC and dapD genes. This mutation leads to thermosensitivity of growth and impaired in vivo assembly of 30 S ribosomal subunits at 42 °C. The strain carrying the mutation has an altered S2 ribosomal protein as judged by (1) its inability to maintain stable complex with the ribosome under mild washing conditions and (2) its altered electrophoretic mobility.Spontaneous reversion to temperature independence can restore both the normal assembly in vivo of 30 S ribosomal subunits at 42 °C and the normal electrophoretic behaviour of the S2 ribosomal protein in vitro.We conclude therefore that the ts25 mutation affects the structural gene for ribosomal protein S2 (rpsB).  相似文献   

8.
LSCC HD3 chicken erythroleukemia cells, transformed by a temperature-sensitive avian erythroblastosis virus (tsAEV), secreted into the medium several transforming factors which after separation by Bio-Cel P-60 chromatography, stimulated quiescent (G0) chicken embryo fibroblasts and NIH 3T3 mouse cells to replicate DNA in serum-free medium and to form colonies in soft agar. Most of these factors were also mitogenic for the LSCC HD3 cells themselves when they were rendered phenotypically untransformed by incubation at 42 degrees C to inactivate the ts AEV. The transformed LSCC HD3 cells also secreted a non-mitogenic 40 kDa factor which blocked the erythropoietin-induced differentiation of untransformed LSCC HD3 (at 42 degrees C) and the DMSO-induced differentiation of Friend murine erythroleukemia cells into hemoglobin-synthetizing erythroid cells.  相似文献   

9.
The preliminary characterization of a unique temperature-sensitive (ts) mutant of bacteriophage SH-133, designatedts18, is reported. The mutant showed a substantial reduction in the ability to form plaques at the nonpermissive temperature (32°C) when compared with its plaqueforming ability at the permissive temperature (27°C). However, the supernatant fromts18-infected cells grown at 32°C exhibited significant infectivity when assayed at 27°C, which indicates that the reduced titer ofts18 at 32°C is not due to its inability to form phage particles at that temperature. Phage particles produced at 32°C, but not at 27°C, were thermolabile when tested at 32°C. The thermolability of phage yields from cells mixedly infected at 32°C with increasing wild-type/ts18 input ratios was independent of the quantity of wild-type gene product per cell. Thermostable phage particles were yielded byts18-infected cells that received short pulses of permissive temperature during the latter part of the latent period. These data indicate that the defect of the mutant is due to the production of a nonstructural assembly protein that misfunctions when viral maturation proceeds at the nonpermissive temperature.  相似文献   

10.
目的:探讨体外培养脐带血单个核细胞定向诱导分化为不同阶段红系祖细胞的动力学变化情况。方法:用0.5%甲基纤维素沉降脐带血红细胞及人淋巴细胞分离液密度梯度离心法得到单个核细胞,在含EPO、SCF、IGF-1等细胞因子的无血清培养体系中诱导其定向分化为红系祖细胞,观察细胞增殖、存活率、细胞集落形成情况,并检测不同阶段细胞红系特异性表面标志CD71和CD235a的表达。结果:随着培养时间的延长,细胞数逐渐增多,14 d细胞可扩增140倍左右,收集诱导后的细胞进行瑞氏吉姆萨染色,可见大量红系祖细胞,诱导后的细胞集落形成能力强,形成的克隆大部分为红系集落。诱导过程中,14 d前CD71、CD235a的表达逐渐增高。按细胞表面标志表达的不同可将诱导的细胞分为4群,分别对应红系祖细胞的不同阶段;随着诱导天数的增加,各时间点细胞对应的早期红系祖细胞群(P2、P3)比例逐渐下降,中晚期红系祖细胞群(P4、P5)的比例逐渐上升。结论:无血清培养基添加细胞因子组合的红系诱导培养体系可较好地诱导扩增红系祖细胞,流式分选可获得相对均一而处于不同分化阶段的红系祖细胞群体。获得了红系祖细胞体外分化的动力学数据,为今后进一步优化红系诱导分化体系获得均一的红系祖细胞奠定了基础,并对未来利用干细胞制备均一的红系祖细胞应用于临床治疗有一定的指导作用。  相似文献   

11.
We investigated the nature of the defect in the temperature-sensitive mutant of Moloney murine sarcoma virus (Mo-MuSV), termed ts110. This mutant has a temperature-sensitive defect in a function required for maintenance of the transformed state. A nonproducer cell clone, 6m2, infected with ts110 expresses P85 and P58 at 33°C, the transformed temperature, but only P58 is detected at the restrictive temperature of 39°C. Shift-up (33°C → 39°C) and in vitro experiments have established that P85 is not thermolabile for immunoprecipitation. Previous temperature-shift experiments (39°C → 33°C) have shown that P85 synthesis resumes after a 2–3 hr lag period. Temperature shifts (39°C → 33°C) performed in the presence of actinomycin D prevented the synthesis of P85, whereas P58 synthesis did not decline for 5 hr, suggesting that P58 and P85 are translated from different mRNAs. The shift-up experiments also indicated that, once made, the RNA coding for P85 can function at the restrictive temperature for several hours. MuSV-ts110-infected cells superinfected with Mo-MuLV produced a ts110 MuSV-MuLV mixture. Sucrose gradient analysis of virus subunit RNAs revealed a ~28S and a ~35S peak. Electrophoresis of the ~28S poly(A)-containing RNA from ts110 virus in methyl mercuric hydroxide gels resolved two RNAs with estimated sizes of 1.9 × 106 and 1.6 × 106 daltons, both smaller than the wild type MuSV-349 genomic RNA (2.2 × 106 daltons). RNA in the ~28S size class from virus preparations harvested at 33°C was found to translate from P85 and P58, whereas, the ~35S RNA yielded helper virus Pr63gag. In contrast, virus harvested at 39°C was deficient in P85 coding RNA only. Peptide mapping experiments indicate that P85 contains P23 sequences, a candidate Moloney mouse sarcoma virus src gene product. Taken together, these results suggest that two virus-specific RNAs are present in ts 110-infected 6m2 cells and rescued ts110 pseudotype virions at 33°C, one coding for P85, whose expression can be interfered with by shifting the culture to 39°C; the other coding for P58, whose expression is unaffected by temperature shifts. P85 is a candidate gag-src fusion protein, while P58 contains gag sequences only.  相似文献   

12.
We have established permanent lines of nonadherent cells from fresh normal mouse bone marrow in media containing pokeweed mitogen-stimulated spleen cell conditioned medium (PWSCM). These lines continuously produced erythropoietic progenitor cells (detected by their ability to form erythroid bursts in semi-solid medium containing erythropoietin) together with cells having characteristics of the mast cell lineage (as demonstrated by metachromatic staining with toluidine blue, histamine content and membrane receptors for IgE). Sixteen such cell lines have been established in sixteen attempts. Cloning experiments were carried out to determine the nature of the progenitor cell(s) responsible for the permanence of these cultures. When cells were cultured in methylcellulose medium containing PWSCM, colonies were observed which reached macroscopic size after 4 weeks of incubation. Replating of individual primary colonies resulted in secondary colony formation, indicating the presence of progenitor cells with self-renewal potential. Forty-seven primary colonies were picked and their cells were suspended in liquid culture medium containing PWSCM. Of these, twenty-one could be expanded to establish permanently growing sublines. Sixteen of these sublines were found to be composed of both erythroid progenitors and mast cells. In five sublines only mast cells could be seen; none of the sublines appeared to be purely erythroid. Karyotypic analysis of mast cells and of erythroid cells of seven sublines derived from individual colonies which arose in cocultures of male and female cells revealed that the mast cells and erythroid cells were both of the same sex in each of the seven sublines; this demonstrates the single cell origin of each colony and of the two lineages derived from it. We conclude that these nonadherent, factor-dependent cell lines are maintained by self-renewal and differentiation of bipotential progenitor cells apparently restricted to the erythroid and mast cell lineages.  相似文献   

13.
The sex-linked temperature-sensitive mutation, shibirets1, which causes, at the restrictive temperature, adult paralysis and pleiotropic morphological defects in embryonic, larval, and pupal development, has been shown to exhibit temperature-sensitive inhibition of differentiation in embryonic cultures in vitro. When shi cultures were incubated at 30°C for 24 hr, both muscle and neuron differentiation were inhibited more than 90% compared to control shi cultures incubated at 20°C. Heat shift experiments showed that the temperature-sensitive periods for neuron and muscle differentiation occurred at 11 to 18 and 14 to 16 hr, respectively, where zero time was the initiation of gastrulation in donor embryos. Short heat pulses (4 and 8 hr) which extended into the temperature-sensitive period resulted in moderate inhibition of differentiation; greater inhibition occurred as the duration of the pulses increased. In contrast, heating wild-type Oregon-R cultures at 30°C for 24 hr did not inhibit muscle cell differentiation and inhibited neuron differentiation relatively little. The temperature-sensitive period in shibire for muscle differentiation occurred well after myoblast division, during the period of myocyte elongation, aggregation, and fusion, whereas that for neuron differentiation took place during a period of enzyme synthesis (acetylcholinesterase and choline acetyltransferase) and axon elongation. Thus, the shi temperature-sensitive gene product affects at least two different cell types, in vitro, at different times during differentiation.  相似文献   

14.
Total phospholipids were extracted from cells of temperature sensitive unsaturated fatty acid auxotrophs of Escherichia coli (K-12 UFAts) grown at 28°C (PL28), and at 42°C in the presence of 2% KCl as an osmotic stabilizer (PL42 (KCl)). From the analysis of fatty acids, it was shown that the content of unsaturated fatty acids of PL42 (KCl) is only 9% of the total fatty acids, while that of PL28 is 54%. The thermal phase transitions of the bilayers prepared from the phospholipid fractions were studied by proton magnetic resonance. The line widths of the methylene signals and the sums of the methylene and methyl signal intensities were plotted against reciprocal values of absolute temperature 1/T or temperature itself. From the plots phase transitions were detected at about 19°C for PL28 and at 43°C for PL42 (KCl). In spite of its complex composition of fatty acids a highly cooperative transition was observed in the case of PL42 (KCl). It was also suggested that the phospholipids bilayers in the biomembranes of this strain at the growth temperature (42°C) are in the state where the gel and liquid crystalline phases coexist.  相似文献   

15.
A mutant temperature-sensitive for R-plasmid replication, Rms201ts14, was isolated from composite plasmid Rms201 after mutagenesis of P1 transducing lysate with 100 mM hydroxylamine for 40 h at 37°C. When Escherichia coli ML1410(Rms201ts14)+ was grown at temperatures between 40 and 42°C in L broth, antibiotic-sensitive cells were segregated. When the incubation temperature of ML1410(Rms201ts14)+ in L-broth was shifted to 42 from 30°C, the increase in the number of antibiotic-resistant cells ceased 90 min after the temperature shift. However, the total number of cells continuously increased, and only 3% of the cells retained the plasmid at 5 h after the temperature shift to 42°C. At 30°C the amounts of covalently closed circular deoxyribonucleic acid per chromosome of Rms201ts14 and Rms201 were 3.8 and 6.3%, respectively. Incorporation of radioactive thymidine into the covalently closed circular deoxyribonucleic acid of Rms201ts14 did not take place at 42°C, whereas radioactive thymidine was incorporated into the covalently closed circular deoxyribonucleic acid of Rms201 at a rate of 4%/chromosome even at 42°C. The synthesis of plasmid covalently closed circular deoxyribonucleic acid in a cell harboring Rms201ts14 was almost completely blocked at 42°C. These results indicated that the gene(s) responsible for plasmid deoxyribonucleic acid replication was affected in the mutant Rms201ts14. Temperature-sensitive miniplasmid pMSts214, which has a molecular weight of 5.3 × 106 and encodes ampicillin resistance, was isolated from Rms201ts14. Similarly, miniplasmid pMS201, which encodes single ampicillin resistance, was isolated from its parent, Rms201, and its molecular weight was 4.7 × 106. These results indicate that the gene(s) causing temperature sensitivity for replication of Rms201 resides on the miniplasmid.  相似文献   

16.
Diamond-Blackfan anemia (DBA) is caused by aberrant ribosomal biogenesis due to ribosomal protein (RP) gene mutations. To develop mechanistic understanding of DBA pathogenesis, we studied CD34+ cells from peripheral blood of DBA patients carrying RPL11 and RPS19 ribosomal gene mutations and determined their ability to undergo erythroid differentiation in vitro. RPS19 mutations induced a decrease in proliferation of progenitor cells, but the terminal erythroid differentiation was normal with little or no apoptosis. This phenotype was related to a G0/G1 cell cycle arrest associated with activation of the p53 pathway. In marked contrast, RPL11 mutations led to a dramatic decrease in progenitor cell proliferation and a delayed erythroid differentiation with a marked increase in apoptosis and G0/G1 cell cycle arrest with activation of p53. Infection of cord blood CD34+ cells with specific short hairpin (sh) RNAs against RPS19 or RPL11 recapitulated the two distinct phenotypes in concordance with findings from primary cells. In both cases, the phenotype has been reverted by shRNA p53 knockdown. These results show that p53 pathway activation has an important role in pathogenesis of DBA and can be independent of the RPL11 pathway. These findings shed new insights into the pathogenesis of DBA.  相似文献   

17.
The sex-linked recessive mutation, shibirets1, causes rapid paralysis in adults and larvae at 29°C whereas normal mobility occurs at 22°C. The influence of the mutation on development was analyzed by studying the effects of brief heat pulses administered at various developmental stages. Mutant animals had a polyphasic temperature-sensitive period (TSP) for lethality and a polyphasic effective lethal phase (LP). In addition, heat shocks caused a broad spectrum of phenotypically distinct defects, each characteristic having its own distinct TSP. Some of the processes affected were: early embryogenesis including gastrulation, and the development of eyes, bristles, legs, wings, and the neuromuscular system. The developmental properties of shibirets1 allowed us to make a number of observations concerning determination and pattern formation and to conclude that the lesion affects a fundamental cell process common to many cell types.  相似文献   

18.
Both murine and human bone marrow cells were cultured in plasma clots which were formed inside diffusion chambers implanted into cyclophosphamide- and saline-treated mice. After an initial fall, the number of mouse bone marrow cells and numbers of mouse myeloid stem cells (CFU-C) and agar cluster-forming units rose faster in the cyclophosphamide-treated animals. These hosts also favored formation of myeloid (CFU-D-G) and erythroid (CFU-D-E) colonies and myeloid clusters in the plasma clot. The number and growth rate of mouse CFU-D-G were higher than those of CFU-C from the same marrow population. These observations suggest the existence of humoral factors stimulating granulocyte progenitor cell replication and differentiation. At its best the increment of CFU-D-E number was equivalent to that caused by a single 0·1 unit erythropoietin dose. Culture of normal human marrow cells resulted in colonies in the plasma clot containing only granulocytes and macrophages. Cyclophosphamide-treated host animals were essential for human CFU-D-G development. Plating efficiency for human marrow myeloid colonies was better in the conventional in vitro agar cultures than in diffusion chambers.  相似文献   

19.
Erythroid differentiation of normal human hematopoietic progenitor cells was drastically inhibited by phorbol ester, 12-myristate 13-acetate (PMA), an agent known to activate the class of serine-threonine kinases, protein kinase C (PKC). This inhibition was accompanied by augmented megakaryocytic differentiation as demonstrated by expression of megakaryocyte-specific mRNAs and proteins. These effects of PMA were reversed by two specific antagonists of PKC. Analysis of single colonies transferred from cultures not containing PMA to PMA-containing cultures indicated that, in this system, PMA exerts megakaryocytic differentiating activity directly on cells which may have already initiated a progression toward the erythroid pathway of differentiation. These results suggest that modulation of PKC activity plays a role in erythroid and megakaryocytic differentiation, and may constitute an important selective signal between these pathways during normal blood cell development.  相似文献   

20.
M W McBurney  G F Whitmore 《Cell》1974,2(3):183-188
The Chinese hamster cell line, tsAUXB1, is auxotrophic for glycine, adenosine, and thymidine when grown at 38.5°C, but is prototrophic at 34°C. The evidence suggests that the temperature-sensitive lesion exists in the enzyme responsible for the addition of glutamyl residues onto intracellular folate derivatives. This enzyme appears to be synthesized constitutively in wild type cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号