首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
3.
4.
The effects of inhibition of PGF2α synthesis on luteolysis in mares and on the incidence of prolonged luteal activity were studied in controls and in a group treated with flunixin meglumine (FM), a PGF2α inhibitor (n = 6/group). The FM was given every 8 hours (1.0 mg/kg) on each of Days 14.0 to 16.7. Concentration (pg/mL) of PGF2α metabolite averaged over 8 hours of hourly blood sampling at the beginning of each day, was lower in the FM group than in the controls on Day 14 after ovulation (6.7 ± 1.3 vs. 13.8 ± 2.9, P < 0.05), Day 15 (15.0 ± 3.9 vs. 35.2 ± 10.4, P < 0.10), and Day 16 (21.9 ± 5.7 vs. 54.7 ± 11.4, P < 0.03). Concentration (ng/mL) of progesterone (P4) was greater in the FM group than in the controls on Day 14 (10.1 ± 0.9 vs. 7.7 ± 0.9, P < 0.08), Day 15 (9.2 ± 1.0 vs. 4.3 ± 1.0, P < 0.008), and Day 16 (5.6 ± 1.6 vs. 1.2 ± 0.4, P < 0.02). The interval from ovulation to the beginning of a decrease in P4 and to the end of luteolysis (P4 < 1 ng/mL) was each delayed (P < 0.03) by ∼1 day in the FM group. Intervals involving the luteal phase were long (statistical outliers, P < 0.05) in two mares in the FM group, indicating prolonged luteal activity. Results supported the hypotheses that (1) inhibition of PGF2α synthesis interferes with luteolysis in mares and (2) inhibition of PGF2α at the expected time of luteolysis may lead to prolonged luteal activity.  相似文献   

5.
Flunixin meglumine (FM; 2.5 mg/kg) was given to heifers at three 8-h intervals, 16 d after ovulation (first treatment = Hour 0) to inhibit the synthesis of prostaglandin F (PGF), based on plasma concentrations of a PGF metabolite (PGFM). Blood samples were collected at 8-h intervals from 15 to 18 d in a vehicle (control) and FM group (n = 16/group). Hourly samples were collected from Hours −2 to 28 in 10 heifers in each group. Heifers that were in preluteolysis or luteolysis at Hour 0 based on plasma progesterone (P4) concentrations at 8-h intervals were partitioned into subgroups. Concentration of PGFM was reduced (P < 0.05) by FM treatment in each subgroup. For the preluteolytic subgroup, the first decrease (P < 0.05) in P4 concentration after Hour 0 occurred at Hours 24 and 40 in the vehicle and FM groups, respectively. Plasma P4 concentrations 32 and 40 h after the beginning of luteolysis in the luteolytic subgroup were greater (P < 0.05) in the FM group. Concentration at the peak of a PGFM pulse in the FM group was greater (P < 0.05) in the luteolytic than in the preluteolytic subgroup. The peak of a PGFM pulse occurred more frequently (P < 0.001) at the same hour as the peak of an LH fluctuation than at the ending nadir of an LH fluctuation. In conclusion, a reduction in prominence of PGFM pulses during luteolysis delayed completion of luteolysis, and treatment with FM inhibited PGFM production more during preluteolysis than during luteolysis.  相似文献   

6.
The uterine horns and utero-ovarian veins of nine crossbred mature gilts were bilaterally cannulated on day 9 of the estrous cycle (day 0 - first day of estrus). Each uterine horn in treated gilts (N=5) was infused with 150 μg PGE2 in 3 ml of saline at 0900 h on day 12, 15 and 18 of the estrous cycle. Control gilts (N=4) received 3 ml saline intrauterine infusions on the corresponding day. Blood samples were collected from the utero-ovarian veins 15 min before each infusion and for the following 6 h with 15, 30 and 60 min intervals through the first, second and third two-hour periods, respectively. Venous concentrations of PGE2 and PGF2α were determined by radioimmunoassay procedures. Infusion of PGE2 resulted in an immediate elevation in PGE2 concentration in utero-ovarian venous drainage. Coincident elevations of PGF2α utero-ovarian venous concentrations were observed after PGE2 infusion. Plasma PGF concentrations in the utero-ovarian veins were elevated (P<.01) in PGE2 treated gilts for one hour post-treatment. The duration of PGE2 and PGE2α elevations as well as the peak values were influenced by day of the cycle.  相似文献   

7.
A new in vivo model for studying luteolysis was developed in sheep to provide a convenient method for collecting corpora lutea for molecular, biochemical, and histological analysis during a procedure that mimics natural luteolysis. It was found that the infusion of prostaglandin F(2α) (PGF(2α)) at 20 μg/min/h into the systemic circulation during the mid luteal phase of the cycle allowed sufficient PGF(2α) to escape across the lungs and thus mimic the transient 40% decline in the concentration of progesterone in peripheral plasma seen at the onset of natural luteolysis in sheep. Additional 1h-long systemic infusions of PGF(2α), given at physiological intervals, indicated that two infusions were not sufficient to induce luteolysis. However, an early onset of luteolysis and estrus was induced in one out of three sheep with three infusions, two out of three sheep with four infusions, and three out of three sheep with five infusions. Reducing the duration of each systemic infusion of PGF(2α) from 1h to 30 min failed to induce luteolysis and estrus even after six systemic infusions indicating that, not only are the amplitude and frequency of PGF(2α) pulses essential for luteolysis, but the actual duration of each pulse is also critical. We conclude that a minimum of five systemic pulses of PGF(2α), given in an appropriate amount and at a physiological frequency and duration, are required to mimic luteolysis consistently in all sheep. The five pulse regimen thus provides a new accurate in vivo model for studying molecular mechanisms of luteolysis.  相似文献   

8.
To determine the physiological significance of tumor necrosis factor alpha (TNFalpha) in the regulation of luteolytic prostaglandin (PG) F(2alpha) release by the bovine endometrium, the effect of TNF-alpha on PGF(2alpha) output by the endometrial tissues in vitro was investigated and compared with the effect of oxytocin (OT). Furthermore, the presence of specific receptors for TNFalpha in the bovine endometrium during the estrous cycle was determined. Endometrial slices (20-30 mg) taken from six stages of the estrous cycle (estrus: Day 0; early I: Days 2-3; early II: Days 5-6; mid-: Days 8-12; late: Days 15-17; and follicular: Days 19-21), as determined by macroscopic examination of the ovaries and uterus, were exposed to TNFalpha (0.06-6 nM) and/or OT (100 nM). OT stimulated PGF(2alpha) output at the follicular stage and at estrus (P < 0.001), but not at the late luteal stage. On the other hand, the stimulatory effects of TNFalpha on PGF(2alpha) output were observed not only at the follicular stage but also at the late luteal stage (P < 0.001). When the endometrial tissues at late luteal stage were simultaneously exposed to TNFalpha (0.6 nM) and OT (100 nM), the stimulatory effect on PGF(2alpha) output was higher than the effect of TNFalpha or OT alone (P < 0.05). Specific binding of TNFalpha to the bovine endometrial membranes was observed throughout the estrous cycle. The concentration of TNF-alpha receptor at the early I luteal stage was less than the concentrations at other luteal stages (P < 0.01). The dissociation constant (K(d)) values of the endometrial membranes were constant during the estrous cycle. The overall results lead us to hypothesize that TNFalpha may be a trigger for the output of PGF(2alpha) by the endometrium at the initiation of luteolysis in cattle.  相似文献   

9.
Conceptus estrogen clearly plays a major role in luteal maintenance in the pig; however, other conceptus-derived substances or conceptus-induced uterine secretory products appear to have a local luteotrophic/anti-luteolytic effect on the corpora lutea (CL) and likely may play a key role in maternal recognition of pregnancy in the pig. The objective of these studies was to compare PGF2α-induced luteolysis in estrogen-treated ‘pseudopregnant’ gilts versus pregnant gilts during the period of maternal recognition of pregnancy. In Experiment 1, doses of PGF2α ranging from 1 to 100 μg were administered via intraluteal silastic implants to pseudopregnant gilts to determine the dose necessary to cause functional (progesterone) and structural (weight) luteal regression similar to that observed during the natural estrous cycle. Luteal sensitivity to this minimally effective luteolytic dose of PGF2α was then determined for both pseudopregnant and pregnant gilts in Experiment 2. Experiment 3 investigated whether Day 13 porcine conceptus tissue could directly prevent PGF2α-induced luteolysis at the level of the CL. The minimally effective luteolytic dose of PGF2α (100 μg) determined in the pseudopregnant pig caused a similar decline in progesterone concentration and weight of CL in pregnant gilts, suggesting that the susceptibility of CL of pregnant and pseudopregnant pigs to PGF2α is similar. However, luteal weight was greater (P<0.05) for the pregnant gilts than for pseudopregnant gilts, suggesting that estrogen treatment alone cannot mimic the conceptus effects on CL growth and development. Experiment 3 demonstrated that lyophilized Day 13 conceptus tissue implanted directly into individual CL could partially inhibit PGF2α-induced luteolysis, providing for the first time direct evidence that porcine conceptuses as early as Day 13 contain factors which can directly (i. e. at the level of the CL) prevent luteal regression.  相似文献   

10.
Twelve mixed breed does were injected with different doses of prostaglandin F2α (PGF2α) or saline on day 144 of gestation. Four each received single intramuscular injections of 5.0 or 2.5 mg PGF, or 1.0 ml saline (controls). Systemic progesterone (P4) concentrations were determined daily from day 144 until the day of kidding. Does receiving 5.0 mg PGF2α, 2.5 mg PGF2α, or saline kidded within mean (± SD) hours and range (hours) of 35 ± 8.6 and 28–48, 43 ± 11.8 and 29–57, and 111 ± 79.1 and 41–200, respectively. Mean (± SD) concentrations of P4 (ng/ml) on the day of injection and on day 1 postinjection were 5.2 ± 2.6 and 0.7 ± 0.9, 5.3 ± 2.2 and 1.1 ± 1.0, and 6.4 ± 3.9 and 4.1 ± 2.6 for does receiving 5.0 mg PGF2α, 2.5 mg PGF2α, or saline, respectively. It was concluded that 5.0 mg and 2.5 mg PGF2α effectively shortened the interval from injection to parturition, but that this interval was not as predictable as that previously reported with 20 mg PGF2α.  相似文献   

11.
Prostaglandin F(2α) (PGF(2α)) induces luteolysis within a few days in cows, and immune cells increase in number in the regressing corpus luteum (CL), implying that luteolysis is an inflammatory-like immune response. We investigated the rapid change in polymorphonuclear neutrophil (PMN) numbers in response to PGF(2α) administration as the first cells recruited to inflammatory sites, together with mRNA of interleukin-8 (IL-8: neutrophil chemoattractant) and P-selectin (leukocyte adhesion molecule) in the bovine CL. CLs were collected by ovariectomy at various times after PGF(2α) injection. The number of PMNs was increased at 5 min after PGF(2α) administration, whereas IL-8 and P-selectin mRNA increased at 30 min and 2 h, respectively. PGF(2α) directly stimulated P-selectin protein expression at 5-30 min in luteal endothelial cells (LECs). Moreover, PGF(2α) enhanced PMN adhesion to LECs, and this enhancement by PGF(2α) was inhibited by anti-P-selectin antibody, suggesting that P-selectin expression by PGF(2α) is crucial in PMN migration. In conclusion, PGF(2α) rapidly induces the accumulation of PMNs into the bovine CL at 5 min and enhances PMN adhesion via P-selectin expression in LECs. It is suggested that luteolytic cascade by PGF(2α) may involve an acute inflammatory-like response due to rapidly infiltrated PMNs.  相似文献   

12.
The objective of this study was to evaluate the effect of a PGF2α-analogue (PGF) on ovulation and pregnancy rates after timed artificial insemination (TAI) in cattle. In experiment 1, crossbred dual-purpose heifers, in a crossover design (3 × 3), were given an intravaginal progesterone-releasing insert (controlled internal drug release [CIDR]) plus 1 mg estradiol benzoate (EB) intramuscularly (im) and 250 μg of a PGF-analogue im on Day 0. The CIDR inserts were removed 5 days after follicular wave emergence, and the heifers were randomly divided into three treatment groups to receive the following treatments: (1) 1 mg of EB im (EB group, n = 13); (2) 500 μg of PGF im (PG group, n = 13); or (3) saline (control group, n = 13), 24 hours after CIDR removal. Ovulation occurred earlier in EB (69.81 ± 3.23 hours) and PG groups (73.09 ± 3.23 hours) compared with control (83.07 ± 4.6 hours; P = 0.01) after CIDR removal. In experiment 2, pubertal beef heifers (n = 444), 12 to 14 months of age were used. On Day 0, the heifers were given a CIDR insert plus 2 mg EB im. On Day 9, the CIDR was removed and the heifers were given 500 μg of PGF im. Heifers were randomly assigned into one of three treatment groups: (1) 1 mg of EB (EB group; n = 145); (2) 500 μg of PGF (PG group; n = 149), both 24 hours after CIDR removal; or (3) 600 μg of estradiol cypionate (ECP group; n = 150) at CIDR removal. Timed artificial insemination occurred 48 hours after CIDR removal in the ECP group and 54 hours in the PG and EB groups. The percentage of heifers ovulating was higher in the PG group compared with the other groups (P = 0.08). However, the pregnancy rates did not differ among groups (47.6%, 45%, and 46.6%, for EB, PG, and ECP, respectively; P = 0.9). In experiment 3, 224 lactating beef cows, 40 to 50 days postpartum with 2.5 to 3.5 of body condition score were treated similarly as described in experiment 2, except for the ECP group, which was excluded. The treatments were as follows: 1 mg EB (EB group; n = 117) or 500 μg PGF (PG group; n = 107), 24 hours after CIDR removal. The calves were temporarily separated from their dams from Days 9 to 11. No difference was detected on the pregnancy rate between the EB and PG groups (58.1% vs. 47.6%, respectively; P = 0.11). Taken together, the combined results suggested that PGF2α could be successfully used to induce and synchronize ovulation in cattle undergoing TAI, with similar pregnancy rates when compared with other ovulatory stimuli (ECP and EB).  相似文献   

13.
Prostaglandin F2α (PGF2α) release invitro by luteal tissue from mares was quantified to determine if exogenous prostaglandin analog increased endogenous luteal PGF2α production during induced luteolysis. On day 8 after ovulation, luteal tissue was collected by flank laparotomy and endometrium was collected by uterine biopsy. Mares were assigned to one of four treatments: (1) no intramuscular injection at 0-hr (n = 5), (2) 250 μg Fluprostenol (ICI 81008 PGF2α analog) at 4-hr (n = 4), (3) 250 μg Fluprostenol at 12-hr (n = 5), or (4) 250 μg Fluprostenol at 28-hr (n = 5) prior to tissue collection at laparotomy. Blood was collected from a jugular vein at laparotomy. Luteal and endometrial tissues (100-mg minces) were incubated in duplicate in 5 ml of Krebs-Ringer bicarbonate buffer (pH 7.4) in an ice bath in an air atmosphere or at 37°C in an atmosphere of 95% O2:5% CO2. The incubation treatments consisted of: no treatment, indomethacin 1.3 × 10?4M, 1 μg/ml of arachidonic acid, 10 μg/ml of Fluprostenol, and 100 μM dbc-AMP (Fluprostenol was not added to endometrial tissue incubations). The injection of Fluprostenol induced luteolysis in these mares as indicated by decreased plasma progesterone and luteal tissue progesterone production (P<0.01). Luteal PGF2α production was only detectable in tissue from mares that had been injected with Fluprostenol; production reached a maximum by 12 hr post-injection and had returned to pre-treatment levels by 28 hr (P<0.01). Endometrial tissue produced PGF2α, but this activity was not significantly affected by injection of mares with Fluprostenol. Increased production of PGF2α by luteal tissue of mares during PGF2α analog induced luteolysis was similar to that observed in the pig and ewe.  相似文献   

14.
Prostaglandin (PG)E2 9-ketoreductase, which catalyzes the conversion of PGE2 to PGF2, was purified from human brain to apparent homogeneity. The molecular weight, isoelectric point, optimum pH, Km value for PGE2, and turnover number were 34,000, 8.2, 6.5–7.5, 1.0 mM, and 7.6 min–1, respectively. Among PGs tested, the enzyme also catalyzed the reduction of other PGs such as PGA2, PGE1, and 13,14-dihydro-15-keto PGF2, but not that of PGD2, 11-PGE2, PGH2, PGJ2, or 12-PGJ2. The reaction product formed from PGE2 was identified as PGF2, by TLC combined with HPLC. This enzyme, as is the case for carbonyl reductase, was NADPH-dependent, preferred carbonyl compounds such as 9,10-phenanthrenequinone and menadione as substrates, and was sensitive to indomethacin, ethacrynic acid, and Cibacron blue 3G-A. The reduction of PGE2 was competitively inhibited by 9,10-phenanthrenequinone, which is a good substrate of this enzyme, indicating that the enzyme catalyzed the reduction of both substrates at the same active site. These results suggest that PGE2 9-ketoreductase, which belongs to the family of carbonyl reductases, contributes to the enzymatic formation of PGF2 in human brain.Special issue dedicated to Dr. Sidney Udenfriend.  相似文献   

15.
Two field trials were designed to evaluate use of the prostaglandin F analog cloprostenol (CP) in dairy cattle with unobserved estrus and a palpably mature corpus luteum (CL). In Trial 1, 98 cows were treated with CP (500 μg IM) and 83 were given saline. Cows in both groups were assigned to be inseminated based on observed signs of estrus. Cows treated with CP were inseminated sooner than controls although heat detection still presented some difficulty. Conception rates were the same for both groups. In Trial 2, 154 cows were treated with CP for unobserved estrus and were assigned to be inseminated at estrus (78 cows) or were inseminated twice by appointment at 72 and 96 hours after treatment (76 cows). Appointment breeding eliminated problems associated with detection of estrus so nearly all cows were inseminated soon after treatment. In addition, cows bred twice by appointment had a higher conception rate than those bred based on signs of estrus. Induction of luteolysis with the prostaglandin F analog CP in cows with unobserved estrus and a CL should prove to be a very effective addition to reproductive herd health programs. Successful use of CP for this purpose is dependent upon accurate diagnosis of the presence of a mature CL. In these trials 83 (92.4%) of 90 cows sampled had blood serum progesterone concentrations indicative (≥ 2.0 ng/ml) of significant luteal tissue activity.  相似文献   

16.
This investigation comprises three trials. Trial 1 consists of an in vitro comparison of three semen extenders: two egg yolk based (customized Tris-egg yolk-glycerol and Triladyl®), the third (AndroMed®) soybean lecithin based. With regard to post-thaw motility, the phytoextender AndroMed® proved to be superior (59±3% v. 53±2% and 53±2%, P<0.05). It had earlier been shown that addition of the commercial prostaglandin F2α preparation Dinolytic® before freezing compromises post-thaw motility; therefore, in Trial 2, Dinolytic® was added after thawing. Frozen-thawed spermatozoa tolerated addition of Dinolytic® at a concentration of 30% (v/v). In Trial 3, cows were inseminated using straws in which diluted semen and Dinolytic® were frozen in the same straw, separated by an air bubble, so intermingling could only take place in the course of insemination. Pregnancy rates at Dinolytic® dosages of 0%, 30% or 60% amounted to 44%, 41% and 56%, respectively (P>0.05), a result that encourages a large-scale field study, which is envisioned.  相似文献   

17.
Six cyclic Holstein dairy cows were anesthetized on days 12–14 post-oestrus. Reproductive tract was exposed by midventral incision, and the ovarian (utero-ovarian) vein and facial artery cannulated. Oviduct was ligated, and a catheter (affluent) introduced into the tip of the uterine horn. The uterine horn was ligated above the uterine body, a second catheter (effluent) introduced into the uterine lumen, and an electromagnetic blood flow transducer placed around the uterine artery. On the day following surgery, the uterine horn was infused constantly for 9 h with PGF dissolved in PBS (0.7 ml/min, 177 ng/ml). During periods 1 and 3 (first 3 h and last 3 h, respectively) only PGF was perfused; during period 2 (between 3 h and 6 h) 101tgμg/ml of PGE2 were added to the perfusate together with PGF. Uterine venous and peripheral blood samples were collected simultaneously every 15 min, and uterine blood flow recorded continuously. Least-square means for PGF measured in uterine venous drainage for periods 1, 2 and 3 were 315 ± 26, 557 ± 24 and 511 ± 26 pg/ml, respectively (P < 0.05). Uterine blood flow values were 52 ± 5, 67 ± 4 and 61 ± 4 ml/min for periods 1, 2 and 3 (P < 0.08), respectively.Results do not support the hypothesis that the antiluteolytic effect of PGE2 is associated with a suppression of uterine PGF release into the circulation. Greater release of PGF to the circulation in period 2 (addition of PGE2) is probably the result of the vasodilatory effect of PGE2 on uterine endometrial vasculature.  相似文献   

18.
An enzyme immunoassay for prostaglandin F was developed in which the hapten molecule was labeled with alkaline phosphatase protein. After competition between the enzyme-labeled prostaglandin F and the free prostaglandin F in their immunoreaction with prostaglandin F-specific antiserum, the antigen-antibody conjugate was precipitated by the double antibody method, and the activity of precipitated alkaline phosphatase was determined. Calibration curves of enzyme activity versus the amount of added prostaglandin F, were constructed. Under optimal conditions of pH, buffer concentration, incubation time and amount of antibody and enzyme-labeled antigen, prostaglandin F could be measured quantitatively in the range of 0.5 pmol to 1 nmol. This method was applied for the determinations of prostaglandin F added to urine.  相似文献   

19.
Five healthy adult men received iv PGF at dosages of 0.05, 0.20 and 2.0 μg/kg/min for 30 min. There were no significant changes in serum FSH, LH or TSH levels. Serum GH and cortisol levels were slightly increased at the highest dosage. These responses were associated with, and presumably a result of, stressful side effects. Thus, PGF cannot be used as a provocative test of pituitary hormone reserve.Prostaglandins (PG's) have recently been implicated in the release of a number of hormones from the anterior pituitary gland. The stimulation of GH release by PG's of the E series from incubated rat pituitary slices has been demonstrated. In vivo stimulation by PGE1 of ACTH in rats and of GH release in man has also been shown.The present study was undertaken in order to examine the efficacy of iv administration of PGF as a provocative test of anterior pituitary hormone reserve in man. The responses in circulating levels of gonadotropins, TSH, GH, and cortisol (as an index of ACTH) were measured.  相似文献   

20.
In a previous study in our laboratory, treatment of non-prolific Western White Face (WWF) ewes with PGF(2 alpha) and intravaginal sponges containing medroxyprogesterone acetate (MAP) on approximately Day 8 of a cycle (Day 0 = first ovulation of the interovulatory interval) resulted in ovulations during the subsequent 6 days when MAP sponges were in place. Two experiments were performed on WWF ewes during anestrus to allow us to independently examine if such ovulations were due to the direct effects of PGF(2 alpha) on the ovary or to the effects of a rapid decrease in serum concentrations of progesterone at PGF(2 alpha)-induced luteolysis. Experiment 1: ewes fitted with MAP sponges for 6 days (n = 12) were injected with PGF(2 alpha) (n = 6; 15 mg im), or saline (n = 6) on the day of sponge insertion. Experiment 2: ewes received progesterone-releasing subcutaneous implants (n = 6) or empty implants (n = 5) for 5 days. Six hours prior to implant removal, all ewes received a MAP sponge, which remained in place for 6 days. Ewes from both experiments underwent ovarian ultrasonography and blood sampling once daily for 6 days before and twice daily for 6 days after sponge insertion. Additional blood samples were collected every 4 h during sponge treatment. Experiment 1: 4-6 (67%) PGF(2 alpha)-treated ewes ovulated approximately 1.5 days after PGF(2 alpha) injection; these ovulations were not preceded by estrus or a preovulatory surge release of LH, and resulted in transient corpora hemorrhagica (CH). The growth phase was longer (P < 0.05) and the growth rate slower (P < 0.05) in ovulating versus non-ovulating follicles in PGF(2 alpha)-treated ewes. Experiment 2: in ewes given progesterone implants, serum progesterone concentrations reached a peak (1.7 2 ng/mL; P < 0.001) on the day of implant removal and decreased to basal concentrations (<0.17 ng/mL; P < 0.001) within 24 h of implant removal. No ovulations occurred in either the treated or the control ewes. We concluded that ovulations occurring after PGF(2 alpha) injection, in the presence of a MAP sponge, could be due to a direct effect of PGF(2 alpha) at the ovarian level, rather than a sudden decline in circulating progesterone concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号