首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional models for alphaB-crystallin and its complex with zinc were obtained by molecular homology modeling and quantum mechanical calculations in order to explain the effect of the metal on the chaperone-like activity of alphaB-crystallin. In fact, measurements of the chaperone-like activity of alphaB-crystallin revealed that it is significantly increased in presence of the zinc. The theoretical models allowed us to estimate the increased exposition of hydrophobic residues caused by the presence of zinc, suggesting a relationship between structural changes and the increased chaperone-like activity.  相似文献   

2.
AlphaB-crystallin is a small heat shock protein, showing chaperone-like activity, that is expressed in the lens and in several other tissues. The role of some metal ions in the alphaB-crystallin biology starts to be well documented. In some neuro-degenerative pathologies, like Parkinson and Alzheimer's diseases, alphaB-crystallin is expressed at high levels. In the same pathologies an accumulation of divalent metal cations is observed. In order to investigate the interactions between human alphaB-crystallin and divalent metal ions, the effect of copper, zinc and calcium on the chaperone-like activity of the protein has been studied. Copper and zinc at concentrations 0.1 and 1 mM significantly increase the chaperone-like activity, whereas calcium 1 mM completely inhibits activity. Electron paramagnetic resonance (EPR) and circular dichroism (CD) spectra indicate the possible complex formation between Cu(II) and protein at physiological pH. Molecular modeling calculations, carried out for the probable Cu(II) binding site, suggest that a complex with three histidine residues is possible.  相似文献   

3.
alpha-Crystallin, a heteromultimeric protein made up of alphaA- and alphaB-crystallins, functions as a molecular chaperone in preventing the aggregation of proteins. We have shown earlier that structural perturbation of alpha-crystallin can enhance its chaperone-like activity severalfold. The two subunits of alpha-crystallin have extensive sequence homology and individually display chaperone-like activity. We have investigated the chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates against thermal and nonthermal modes of aggregation. We find that, against a nonthermal mode of aggregation, alphaB-crystallin shows significant protective ability even at subphysiological temperatures, at which alphaA-crystallin or heteromultimeric alpha-crystallin exhibit very little chaperone-like activity. Interestingly, differences in the protective ability of these homoaggregates against the thermal aggregation of beta(L)-crystallin is negligible. To investigate this differential behavior, we have monitored the temperature-dependent structural changes in both the proteins using fluorescence and circular dichroism spectroscopy. Intrinsic tryptophan fluorescence quench-ing by acrylamide shows that the tryptophans in alphaB-crystallin are more accessible than the lone tryptophan in alphaA-crystallin even at 25 degrees C. Protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates the higher solvent accessibility of hydrophobic surfaces on alphaB-crystallin. Circular dichroism studies show some tertiary structural changes in alphaA-crystallin above 50 degrees C. alphaB-crystallin, on the other hand, shows significant alteration of tertiary structure by 45 degrees C. Our study demonstrates that despite a high degree of sequence homology and their generally accepted structural similarity, alphaB-crystallin is much more sensitive to temperature-dependent structural perturbation than alphaA- or alpha-crystallin and shows differences in its chaperone-like properties. These differences appear to be relevant to temperature-dependent enhancement of chaperone-like activity of alpha-crystallin and indicate different roles for the two proteins both in alpha-crystallin heteroaggregate and as separate proteins under stress conditions.  相似文献   

4.
The chaperone-like activity and the oligomeric state of alphaB-crystallin were studied at different temperatures and in the presence of urea and thiocyanate. The activity, assessed measuring the ability of alphaB-crystallin to prevent the aggregation of denatured insulin, strongly depends on temperature. While a significant activity increase was detected at 42 degrees C, the presence of urea and thiocyanate does not affect the protein activity in an irreversible way. In-solution SAXS measurements performed in the same experimental conditions showed that alphaB-crystallin forms near-spherical, hollowed, polydisperse oligomers, whose dimensions change above 42 degrees C. Moreover, in the presence of urea and thiocyanate, a global fit analysis confirms the high stability of alphaB-crystallin assemblies in relationship with their variable quaternary structure. In particular, the changes in the inner radius as well as the thickness and dispersion of the protein shell, account for the preservation of the chaperone-like activity.  相似文献   

5.
6.
The carboxyl-terminal segment of alpha-crystallin, a major lens protein of all vertebrates, has a short and flexible peptide extension of about 20 amino acid residues that are very susceptible to proteolytic truncation and modifications under physiological conditions. To investigate its role in crystallin aggregation and chaperone-like activity, we constructed a mutant of porcine alphaB-crystallin with C-terminal lysine truncated end, which unexpectedly showed better chaperone-like function than wild-type alphaB-crystallin. From circular dichroism (CD) spectra, we show that the mutant possesses similar secondary and tertiary structures to those of native purified and recombinant alphaB-crystallins. Analytical ultracentrifugation revealed that the truncated mutant was smaller than wild-type alphaB-crystallin in aggregation size and mass. The observed higher thermostability and anti-thermal aggregation propensity of the truncated alphaB-crystallin mutant than wild-type alphaB-crystallin are in contrast to the prevailing notion that mutations at the C-terminal lysines of alphaB-crystallin result in substantial loss of chaperone-like activity, despite the overall preservation of secondary structure. The detailed characterization of the C-terminal deletion mutants may provide some deeper insight into the chaperoning mechanism of the structurally related small heat-shock protein family.  相似文献   

7.
Previously, we have shown that residues 73-92 (sequence DRFSVNLDVKHFSPEELKVK) in alphaB-crystallin are involved in preventing the formation of light scattering aggregates by substrate proteins. In this study, we made single substitutions of three conserved amino acid residues (H83 --> A, F84 --> G, and P86 --> A) and a nonconserved amino acid residue (K90 --> C) in the functional region of alphaB-crystallin and evaluated their role in anti-aggregation activity. Mutation of conserved residues led to changes in intrinsic tryptophan intensity, bis-ANS binding, and in the secondary and tertiary structures. The H83A mutation led to a twofold increase in molar mass, while the other mutants did not produce significant changes in the molar mass when compared to that of wild-type protein. The chaperone-like activity of the H83A mutant was enhanced by 15%-20%, and the chaperone-like activity of F84G and P86A mutants was reduced by 50%-65% when compared to the chaperone-like activity of wild-type alphaB-crystallin. The substitution of the nonconserved residue (K90 --> C) did not induce an appreciable change in the structure and function of the mutant protein. Fluorescence resonance energy transfer (FRET) assay demonstrated that destabilized ADH interacted near the K90 region in alphaB-crystallin. The data show that F84 and P86 residues are essential for alphaB-crystallin to effectively prevent the aggregation of substrate proteins. This study further supports the involvement of the residues in the 73-92 region of alphaB-crystallin in substrate protein binding and chaperone-like action.  相似文献   

8.
Structural perturbation of alpha-crystallin is shown to enhance its molecular chaperone-like activity in preventing aggregation of target proteins. We demonstrate that arginine, a biologically compatible molecule that is known to bind to the peptide backbone and negatively charged side-chains, increases the chaperone-like activity of calf eye lens alpha-crystallin as well as recombinant human alphaA- and alphaB-crystallins. Arginine-induced increase in the chaperone activity is more pronounced for alphaB-crystallin than for alphaA-crystallin. Other guanidinium compounds such as aminoguanidine hydrochloride and guanidine hydrochloride also show a similar effect, but to different extents. A point mutation, R120G, in alphaB-crystallin that is associated with desmin-related myopathy, results in a significant loss of chaperone-like activity. Arginine restores the activity of mutant protein to a considerable extent. We have investigated the effect of arginine on the structural changes of alpha-crystallin by circular dichroism, fluorescence, and glycerol gradient sedimentation. Far-UV CD spectra show no significant changes in secondary structure, whereas near-UV CD spectra show subtle changes in the presence of arginine. Glycerol gradient sedimentation shows a significant decrease in the size of alpha-crystallin oligomer in the presence of arginine. Increased exposure of hydrophobic surfaces of alpha-crystallin, as monitored by pyrene-solubilization and ANS-fluorescence, is observed in the presence of arginine. These results show that arginine brings about subtle changes in the tertiary structure and significant changes in the quaternary structure of alpha-crystallin and enhances its chaperone-like activity significantly. This study should prove useful in designing strategies to improve chaperone function for therapeutic applications.  相似文献   

9.
Two unique polypeptides, 22.4 and 16.4 kDa, were prominent in some human cataracts. Both proteins were identified as modified forms of the small heat shock protein, alphaB-crystallin. The concentration of total alphaB-crystallin in most of these cataracts was significantly increased. The 22.4-kDa protein was subsequently designated as alphaB(g). Mass spectrometric analyses of tryptic and Asp-N digests showed alphaB(g) is alphaB-crystallin minus the C-terminal lysine. alphaB(g) constituted 10-90% of the total alphaB-crystallin in these cataracts and was preferentially phosphorylated over the typical form of alphaB-crystallin. Human alphaB(g) and alphaB-crystallin were cloned and expressed in Escherichia coli. The differences in electrophoretic mobility and the large difference in native pI values suggest some structural differences exist. The chaperone-like activity of recombinant human alphaB(g) was comparable to that of recombinant human alphaB-crystallin in preventing the aggregation of lactalbumin induced by dithiothreitol. The mechanism involved in generating alphaB(g) is not known, but a premature termination of the alphaB-crystallin gene was ruled out by sequencing the polymerase chain reaction products of the last exon for the alphaB-crystallin gene from lenses containing alphaB(g). The 16.4-kDa protein was an N-terminally truncated fragment of alphaB(g). The high concentration of alphaB-crystallin in these cataracts is the first observation of this kind in human lenses.  相似文献   

10.
alphaB-crystallin, a member of the small heat-shock protein family and a major eye lens protein, is a high molecular mass assembly and can act as a molecular chaperone. We report a synchrotron radiation x-ray solution scattering study of a truncation mutant from the human alphaB-crystallin (alphaB57-157), a dimeric protein that comprises the alpha-crystallin domain of the alphaB-crystallin and retains a significant chaperone-like activity. According to the sequence analysis (more than 23% identity), the monomeric fold of the alpha-crystallin domain should be close to that of the small heat-shock protein from Methanococcus jannaschii (MjHSP16.5). The theoretical scattering pattern computed from the crystallographic model of the dimeric MjHSP16.5 deviates significantly from the experimental scattering by the alpha-crystallin domain, pointing to different quaternary structures of the two proteins. A rigid body modeling against the solution scattering data yields a model of the alpha-crystallin domain revealing a new dimerization interface. The latter consists of a strand-turn-strand motif contributed by each of the monomers, which form a four-stranded, antiparallel, intersubunit composite beta-sheet. This model agrees with the recent spin labeling results and suggests that the alphaB-crystallin is composed by flexible building units with an extended surface area. This flexibility may be important for biological activity and for the formation of alphaB-crystallin complexes of variable sizes and compositions.  相似文献   

11.
Amino acid sequences of alphaB-crystallin, involved in interaction with alphaA-crystallin, were determined by using peptide scans. Positionally addressable 20-mer overlapping peptides, representing the entire sequence of alphaB-crystallin, were synthesized on a PVDF membrane. The membrane was blocked with albumin and incubated with purified alphaA-crystallin. Probing the membrane with alphaA-crystallin-specific antibodies revealed residues 42-57, 60-71, and 88-123 in alphaB-crystallin to interact with alphaA-crystallin. Residues 42-57 and 60-71 interacted more strongly with alphaA-crystallin than the 88-123 sequence of alphaB-crystallin. Binding of one of the alphaB peptides (42-57) to alphaA-crystallin was also confirmed by gel filtration studies and HPLC analysis. The alphaB-crystallin sequences involved in interaction with alphaA-crystallin were distinct from the chaperone sites reported earlier as binding of the alphaB sequence from residues 42-57 does not alter the chaperone-like function of alphaA-crystallin. To identify the critical residues involved in interaction with alphaA-crystallin, R50G and P51A mutants of alphaB-crystallin were made and tested for their ability to interact with alphaA-crystallin. The oligomeric size and hydrophobicity of the mutants were similar. Circular dichroism studies showed that the P51A mutation increased the alpha-helical content of the protein. While the alphaBR50G mutant showed chaperone-like activity similar to wild-type alphaB, alphaBP51A showed reduced chaperone function. Fluorescence resonance energy transfer studies showed that the P51A mutation decreased the rate of subunit exchange with alphaA by 63%, whereas the R50G mutation reduced the exchange rate by 23%. Similar to wild-type alphaB, alphaB-crystallin peptide (42-57) effectively competed with alphaBP51A and alphaBR50G for interaction with alphaA. Thus, our studies showed that the alphaB-crystallin sequence (42-57) is one of the interacting regions in alphaB and alphaA oligomer formation.  相似文献   

12.
Here, we provide functional and direct structural evidence that alphaB-crystallin, a member of the small heat-shock protein family, suppresses thermal unfolding and aggregation of the myosin II molecular motor. Chicken skeletal muscle myosin was thermally unfolded at heat-shock temperature (43 degrees C) in the absence and in the presence of alphaB-crystallin. The ATPase activity of myosin at 25 degrees C was used as a parameter to monitor its unfolding. Myosin retained only 65% and 8% of its ATPase activity when incubated at heat-shock temperature for 15 min and 30 min, respectively. However, 84% and 58% of the myosin ATPase activity was maintained when it was incubated with alphaB-crystallin under the same conditions. Furthermore, actin-stimulated ATPase activity of myosin was reduced by approximately 90%, when myosin was thermally unfolded at 43 degrees C for 30 min, but was reduced by only approximately 42% when it was incubated with alphaB-crystallin under the same conditions. Light-scattering assays and bound thioflavin T fluorescence indicated that myosin aggregates when incubated at 43 degrees C for 30 min, while alphaB-crystallin suppressed this thermal aggregation. Photo-labeled bis-ANS alphaB-crystallin fluorescence studies confirmed the transient interaction of alphaB-crystallin with myosin. These findings were further supported by electron microscopy of rotary shadowed molecules. This revealed that approximately 94% of myosin molecules formed inter and intra-molecular aggregates when incubated at 43 degrees C for 30 min. alphaB-Crystallin, however, protected approximately 48% of the myosin molecules from thermal aggregation, with protected myosin appearing identical to unheated molecules. These results are the first to show that alphaB-crystallin maintains myosin enzymatic activity and prevents the aggregation of the motor under heat-shock conditions. Thus, alphaB-crystallin may be critical for nascent myosin folding, promoting myofibrillogenesis, maintaining cytoskeletal integrity and sustaining muscle performance, since heat-shock temperatures can be produced during multiple stress conditions or vigorous exercise.  相似文献   

13.
Eye lens alpha-crystallin is a member of the small heat shock protein (sHSP) family and forms large multimeric structures. Earlier studies have shown that it can act like a molecular chaperone and form a stable complex with partially unfolded proteins. We have observed that prior binding of the hydrophobic protein melittin to alpha-crystallin diminishes its chaperone-like activity toward denaturing alcohol dehydrogenase, suggesting the presence of mutually exclusive sites for these proteins in alpha-crystallin. To investigate the mechanism of the interaction between alpha-crystallin and substrate proteins, we determined the melittin-binding sites in alpha-crystallin by cross-linking studies. Localization of melittin-binding sites in alpha-crystallin resulted in the identification of RTLGPFYPSR and FVIFLDVKHFSPEDLTVK of alphaA-crystallin and FSVNLDVK of alphaB-crystallin as the chaperone sites. Of these sites, FVIFLDVKHFSPEDLTVK and FSVNLDVK were identified earlier as 1,1'-bi(4-anilino) naphthalene-5,5'-disulfonic acid (bis-ANS)-binding hydrophobic sites. Here we also report the synthesis and characterization of the peptide, KFVIFLDVKHFSPEDLTVK, having the melittin as well as bis-ANS-binding sequence of alphaA-crystallin. We show that this peptide has characteristics similar to that of alphaA-crystallin by in vitro thermal aggregation assay, gel filtration study, CD spectroscopy, and bis-ANS interaction studies. The peptide sequence corresponds to the beta3 and beta4 region present in the alpha-crystallin domain of sHSP 16.5. We hypothesize that the alpha-crystallin domain in other sHSPs may have a similar function and would likely possess the anti-aggregation property even when separated from the native protein.  相似文献   

14.
AlphaB-crystallin is a developmentally regulated small heat shock protein known for its binding to a variety of denatured polypeptides and suppression of protein aggregation in vitro. Elevated levels of alphaB-crystallin are known to be associated with a number of neurodegenerative pathologies such as Alzheimer disease and multiple sclerosis. Mutations in alphaB-crystallin gene have been linked to desmin related cardiomyopathy and cataractogenesis. The physiological function of this protein, however, is unknown. Using discontinuous sucrose density gradient fractionation of post-nuclear supernatants, prepared from rat tissues and human glioblastoma cell line U373MG, we have identified discrete membrane-bound fractions of alphaB-crystallin, which co-sediment with the Golgi matrix protein, GM130. Confocal microscopy reveals co-localization of alphaB-crystallin with BODIPY TR ceramide and the Golgi matrix protein, GM130, in the perinuclear Golgi in human glioblastoma U373MG cells. Examination of synchronized cultures indicated that alphaB-crystallin follows disassembly of the Golgi at prometaphase and its reassembly at the completion of cytokinesis, suggesting that this small heat shock protein, with its chaperone-like activity, may have an important role in the Golgi reorganization during cell division.  相似文献   

15.
Alpha-crystallin is a member of the family of small heat-shock proteins (sHSP) and is composed of two subunits, alphaA-crystallin and alphaB-crystallin, which exhibit molecular chaperone-like properties. In a previous study, we found that residues 70-88 in alphaA-crystallin can function like a molecular chaperone by preventing the aggregation and precipitation of denaturing substrate proteins [Sharma, K. K., et al. (2000) J. Biol. Chem. 275, 3767-3771]. In this study, we show that the complementary sequence in alphaB-crystallin, residues 73-92 (DRFSVNLDVKHFSPEELKVK), is the functional chaperone site of alphaB-crystallin. Like the mini-alphaA-crystallin chaperone, the mini-alphaB-crystallin chaperone interacts with 1,1'-bi(4-anilino) naphthalene-5,5'-disulphonic acid (bis-ANS) and also possesses significant beta-sheet and random coil structure. Deletion of four residues (DRFS) from the N-terminus or deletion of C-terminus LKVK residues from the 73-92 peptide abolishes the chaperone-like activity against denaturing alcohol dehydrogenase. However, removal of DRFS or HFSPEELKVK is necessary to completely abolish the antiaggregation property of the peptide in insulin reduction assay. Substitution of Asp at a site corresponding to D80 in alphaB-crystallin with d-Asp or beta-Asp results in a significant loss of chaperone-like activity. Kynurenine modification of His in the peptide abolishes the antiaggregation property of the mini-chaperone. These data suggest that the 73-92 region in alphaB-crystallin is one of the substrate binding sites during chaperone activity.  相似文献   

16.
Small heat-shock proteins (sHsps) of various origins exist commonly as oligomers and exhibit chaperone-like activities in vitro. Hsp16.3, the sHsp from Mycobacterium tuberculosis, was previously shown to exist as a monodisperse nonamer in solution when analyzed by size-exclusion chromatography and electron cryomicroscropy. This study represents part of our effort to understand the chaperone mechanism of Hsp16.3, focusing on the role of the oligomeric status of the protein. Here, we present evidence to show that the Hsp16.3 nonamer dissociates at elevated temperatures, accompanied by a greatly enhanced chaperone-like activity. Moreover, the chaperone-like activity was increased dramatically when the nonameric structure of Hsp16.3 was disturbed by chemical cross-linking, which impeded the correct reassociation of Hsp16.3 nonamer. These suggest that the dissociation of the nonameric structure is a prerequisite for Hsp16.3 to bind to denaturing substrate proteins. On the other hand, our data obtained by using radiolabeled and non-radiolabeled proteins clearly demonstrated that subunit exchange occurs readily between the Hsp16.3 oligomers, even at a temperature as low as 4 degrees C. In light of all these observations, we propose that Hsp16.3, although it appears to be homogeneous when examined at room temperature, actually undertakes rapid dynamic dissociation/reassociation, with the equilibrium, and thus the chaperone-like activities, regulated mainly by the environmental temperature.  相似文献   

17.
Novel photoresponsive nanogels were prepared by the self-assembly of spiropyrane-bearing pullulan (SpP). The solution properties of the nanogels could be controlled by photostimulation via isomerization between hydrophobic spiropyrane and hydrophilic merocyanine. The molecular chaperone-like activity of the nanogels in protein refolding was investigated. The activity of citrate synthase significantly increased when the amphiphilicity of SpP nanogels was switched by photostimulation.  相似文献   

18.
The well-characterized small heat-shock protein, alphaB-crystallin, acts as a molecular chaperone by interacting with unfolding proteins to prevent their aggregation and precipitation. Structural perturbation (e.g., partial unfolding) enhances the in vitro chaperone activity of alphaB-crystallin. Proteins often undergo structural perturbations at the surface of a synthetic material, which may alter their biological activity. This study investigated the activity of alphaB-crystallin when covalently bound to a support surface; alphaB-crystallin was immobilized onto a range of solid material surfaces, and its characteristics and chaperone activity were assessed. Immobilization was achieved via a plasma-deposited thin polymeric interlayer containing aldehyde surface groups and reductive amination, leading to the covalent binding of alphaB-crystallin lysine residues to the surface aldehyde groups via Schiff-base linkages. Immobilized alphaB-crystallin was characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and quartz crystal microgravimetry, which showed that 300 ng cm(-2) (dry mass) of oligomeric alphaB-crystallin was bound to the surface. Immobilized alphaB-crystallin exhibited a significant enhancement (up to 5000-fold, when compared with the equivalent activity of alphaB-crystallin in solution) of its chaperone activity against various proteins undergoing both amorphous and amyloid fibril forms of aggregation. The enhanced molecular chaperone activity of immobilized alphaB-crystallin has potential applications in preventing protein misfolding, including against amyloid disease processes, such as dialysis-related amyloidosis, and for biodiagnostic detection of misfolded proteins.  相似文献   

19.
In vitro chaperone-like activity of the acute-phase component and plasma drug transporter human α1-acid glycoprotein (AAG) has been shown for the first time. AAG suppressed thermal aggregation of a variety of unrelated enzymatic (e.g., aldolase, catalase, enolase, carbonic anhydrase) and non-enzymatic proteins (β-lactoglobulin, ovotransferrin) and it also prevented dithiothreitol induced aggregation of insulin. The anti-aggregation ability of AAG was abolished/reduced upon drug binding suggesting that protein–protein interactions established between the lipocalin β-barrel fold of AAG and hydrophobic surfaces of the stressed proteins are involved in the chaperone-like activity. The results shed some light on the possible biological function of this enigmatic protein and suggest that besides haptoglobin, clusterin, fibrinogen and α2-macroglobulin AAG can be considered as a novel member of the extracellular molecular chaperones found in human body fluids.  相似文献   

20.
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. In this report chaperone-like activity of SPARC was identified in a thermal aggregation assay in vitro. Ultraviolet circular dichroism (UVCD) spectroscopy determined that SPARC was stable at temperatures up to 50 degrees C. Unfolding and aggregation of the chaperone target protein, alcohol dehydrogenase (ADH), were initiated at 50 degrees C. SPARC inhibited the thermal aggregation of ADH in a concentration-dependent manner, with maximal inhibition at a 1:4 molar ratio of SPARC:ADH. Synergy between the chaperone-like activities of SPARC and alphaB-crystallin, a small heat shock protein and molecular chaperone in the lens, was observed in SPARC-alphaB-crystallin double -/- mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号